• Title/Summary/Keyword: New and Renewable energy

Search Result 4,035, Processing Time 0.032 seconds

A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System (5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구)

  • Kim, Ji-Hye;Lee, Eun-Kyung;Kim, Min-Woo;Oh, Gun-Woo;Lee, Jung-Woon;Kim, Woo-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.65-75
    • /
    • 2018
  • The wind energy produced at night is being discarded because of the excess power generated at night compared to daytime. To solve this problem, In this study, we analyzed the evaluation contents for evaluation of domestic and overseas water electrolysis systems and drew contents for safety performance contents test of the water electrolysis system based on the evaluation contents. The test contents produced the efficiency measurement test, the hydrogen generated pressure test, and the hydrogen purity test. And the safety performance evaluation of the alkaline water electrolysis system of $5Nm^3/hr$ was performed based on the results. As a result, the hydrogen generation was calculated as $5.10Nm^3/hr$ and the stack efficiency was $4.97kWh/Nm^3$. The purity of the hydrogen generated was 99.993% and it was confirmed that it produced high purity hydrogen. I think will help us assess and build safety performance of water electrolysis systems in the future.

The development of High efficiency fuel processor for technical independence 5kW class fuel cell system (기술자립형 5kW 연료전지 시스템 구축을 위한 고효율 연료변환기 개발)

  • Lee, Soojae;Choi, Daehyun;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • Fuel Cell cogeneration system is a promising technology for generating electricity and heat with high efficiency of low pollutant emission. We have been developed 5kW class fuel cell cogeneration system for commercial and residential application. The fuel processor is a crucial part of producing hydrogen from the fossil fuels such as LNG and LPG. The 5kW class high efficiency fuel processor consists of steam reformer, CO shift converter, CO preferential oxidation(PrOx) reactor, burner and heat exchanger. The one-stage CO shift converter process using a metal oxide catalyst was adopted. The efficiency of 5 kW class fuel processor shows 75% based on LHV. In addition, for the purpose of continuous operation with load fluctuations in the commercial system for residential use, load change of fuel processor was tested. Efficiency of 30%, 50%, 70% and 100% load shows 75%, 75%, 73% and 72%(LHV), respectively. Also, during the load change conditions, the product gas composition was stable and the outlet CO concentration was below 5 ppm. The Fuel processor operation was carried out in residential fuel cell cogeneration system with fuel cell stack under dynamic conditions. The 5kW class fuel processor have been evaluated for long-term durability and reliability test including with improvement in optimal operation logic.

  • PDF

Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC (중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가)

  • Kim, Hyoshin;Lee, Jongho;Kim, Ho-Sung;Lee, Yunsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF

KIER Liquefaction R & D's status (KIER 액화 기술 개발 현황)

  • Yang, Jung-Il;Yang, Jung Hoon;Lee, Ho-Tae;Chun, Dong Hyun;Kim, Hak-Joo;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.110.1-110.1
    • /
    • 2010
  • A bench scale slurry bubble column reactor (SBCR) with active-Fe based catalyst was developed for the Fischer-Tropsch synthesis (FTS) reaction. Considering the highly exothermic reaction heat generated in the bench scale SBCR, an effective cooling system was devised consisting of a U-type dip tube submerged in the reactor. Also, the physical and chemical properties of the catalyst were controlled so as to achieve high activity for the CO conversion and liquid oil ($C_{5+}$) production. Firstly, the FTS performance of the FeCuK/$SiO_2$ catalyst in the SBCR under reaction conditions of $265^{\circ}C$, 2.5 MPa, and $H_2/CO=1$ was investigated. The CO conversion and liquid oil ($C_{5+}$) productivity in the reaction were 88.6% and 0.226 $g/g_{cat}-h$, respectively, corresponding to a liquid oil ($C_{5+}$) production rate of 0.03 bbl/day. To investigate the FTS reaction behavior in the bench scale SBCR, the effects of the space velocity and superficial velocity of the synthesis gas and reaction temperature were also studied. The liquid oil production rate increased upto 0.057 bbl/day with increasing space velocity from 2.61 to 3.92 $SL/h-g_{Fe}$ and it was confirmed that the SBCR bench system developed in this research precisely simulated the FTS reaction behavior reported in the small scale slurry reactor.

  • PDF

An experimental study on the cooling performance of carbon dioxide heat pump system for fuel cell vehicles (연료전지 자동차용 이산화탄소 열펌프 시스템에서의 냉방 성능에 관한 실험적 연구)

  • Kim Sungchul;Park Minsoo;Kim Min Soo;Hwang Inchul;Noh Youngwoo;Park Moonsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.378-383
    • /
    • 2005
  • This experimental study presents the results of the cooling performance test of a $CO_2$ heat pump system for fuel cell vehicles. The experimental facility provides the cool ing and heating environment for cabin and heat releasing component. The test loop is designed to target the cooling capacity of 5kW and its coefficient of performance (COP) of 2.2. The cooling performance of the heat pump system is strongly dependent on the refrigerant charge and the degree of superheat. We carried out basic experiments to obtain optimum refrigerant charge and the degree of superheat level at the internal heat exchanger outlet. The heat pump system for fuel cell vehicles is different from that of engine-driven vehicles, where the former has an electricity-driven compressor and the latter has the belt-driven (engine-driven) compressor. In the fuel cell vehicle, the compressor speed is an independent operating parameter and it is controlled to meet the cooling/heating loads. Experiments were carried out at cooling mode with respect to the compressor speed and the incoming outdoor air speed. The results obtained in this study can provide the fundamental cool ing performance data using the $CO_2$ heat pump system for fuel cell vehicles.

  • PDF

Effect of stack configuration on the performance of 10W PEMFC stack (10W급 고분자 전해질 연료전지 스택의 구조적 차이에 다른 운전 특성 비교)

  • Yim, Sung-Dae;Kim, Byung-Ju;Sohn, Young-Jun;Yoon, Young-Gi;Yang, Tae-Hyun;Kim, Chang-Soo;Kim, Young-Chai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.286-286
    • /
    • 2009
  • A small PEM fuel cell has two different stack configurations such as active and passive stacks. The active stack has a distintion of high power density although it makes system complex by using alr blower and related BOPs resulting in large system volume. On the contrary, passive stack has an advantage of compact system because it doesn't need air supplying devices although it reveals relatively low stack power density. In this study we fabricated two 10W PEMFC stacks with different stack configurations, active and passive stacks, and tested their performance and stability. The active stack consists of 13cells with an active area of $5cm^2$. The passive stack has 12cells with an active area of $16cm^2$. When we compared the stack performance of those stacks, the active stack showed higher power density compared to the passive stack, particularly at high voltage regions. However, at low voltage and high current regions, the passive stack performance was comparable to the active stack. The stack stability was largely dependent on the fuel humidity, particularly for active stack. At low humidity conditions, the active stack performance was decreased continuously and the cell voltage distribution was not uniform showing seriously low cell voltage at center cells mainly due to the cell drying. The passive stack showed relatively stable behavior at low humidity and the stack performance was largely dependent on the atmospheric conditions.

  • PDF

Estimation of Economics thorough Prediction of Methane Generation using IPCC Guideline from C Sanitary Landfill (IPCC가이드라인을 이용한 중소도시 C위생매립장의 메탄가스 발생량 예측을 통한 경제성 평가)

  • Lee, Sang-Woo;Park, Seo-Yun;Chang, In-Soo;Kang, Byung-Wook;Park, Sang-Chan;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.189.1-189.1
    • /
    • 2011
  • Global warming effect was intensified due to rapid growth of fossil fuel consumption caused by urbanization and industrialization. Various efforts was being done to solve the problems leading to anomaly climate such as flood, downpour, heavy snow. As a results of international efforts for management of global warming, Kyoto Protocol, which was passed in Kyoto, Japan in 1997, designated $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, $SF_6$ as a global warming gases. And IPCC(Intergovernmental Panel on Climate Change) suggested IPCC guideline for systematic establishment of national greenhouse gas inventory. Among five categories in IPCC guideline, the representative emission source of waste category is SWDS(solid waste disposal site). The concentrative research should progress for effective management of greenhouse gas related with waste. In this study, Tier1 and Tier2 methods which was suggested by 2006 IPCC(Intergovernmental Panel on Climate Change) guideline, was used to predict methane generation from C sanitary landfill located in Chungju area. To predict methane generation from C sanitary landfill, all factors were defaults values that were provided by 2006 IPCC guideline and Korea emission factors for Tier1 and Tier2 method. And economics of generated methane was estimated. From the predicted result using IPCC guideline, the methane generation was persistingly increased over a 9-year period(2000 ~ 2008). Aggregated amount of methane generation was about 3,017ton and 3,170ton predicted by Tier1 and Tier2, respectively. From the results of estimated economic value gained by generated methane from the C sanitary landfill for ten years from now(2010 ~ 2020), the profit was about 2.39 ~ 2.76 hundred million won.

  • PDF

Operation characteristics of partial oxidation reformer for transportation fuels (수송 연료용 부분산화 개질기의 운전특성)

  • Lee, Sangho;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF

Development of EIS Evaluation Method about PEMFC 1kW STACK (가정용 연료전지 스택의 EIS 평가 기법 개발)

  • Park, Chaneom;Han, Woonki;Jung, Jinsu;Ko, Wonsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.100.1-100.1
    • /
    • 2011
  • Electrochemical impedance spectroscopy(EIS) are using widely as a useful technique mainly in the field of electrochemical for the analysis of electrode reactions or characteristics of the composites. The response analysis of the systems technique provides comprehensive informations about the characteristic and structure of complex and internal reaction. The EIS is the method to measure impedance of the measurement target classified by the frequency, it select the equivalent impedance model to give same response from the result and it calculate the parameter. Therefore, the chemical reaction inside the fuel cell is to modeling to electrical impedance. And as repeating the same experiment in each of the operating point, we can get each different parameter. As a result, we can establish the equivalent impedance model in each operating point. Therefore, if we use these models, we can evaluate the fuel cell without the internal design parameter of the fuel cell as required in existing modeling. The EIS is used typically technique for distinguish status of fuel cell called SOH(State Of Health). When the fuel cell is degradation, Efficiency and health of the fuel cell is reduced because internal impedance is increase. As usage of these principles, we can evaluate state of fuel cell through the impedance analysis of fuel cells. In this study, we are presents EIS distinction system and algorithm for residential fuel cell systems. At the time of the fuel cell installation in the fields, the EIS system and proposed algorithm will be able to apply as technique for efficiency and performance evaluation about fuel cell system.

  • PDF

An Experimental Study on the Heat Transfer Characteristics to Enhance the Artificial Hydrate Formation Performance (전열특성을 이용한 가스하이드레이트 인공제조 성능향상에 대한 실험적 연구)

  • Shin, Chang-Hoon;Park, Seoung-Su;Kwon, Ok-Bae;Shin, Kwang-Sik;Choi, Yang-Mi;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.515-518
    • /
    • 2007
  • Gas hydrates are ice-like crystalline compounds that form under low temperature and elevated pressure conditions. Recently, gas hydrates present a novel means for natural gas storage and transportation with potential applications in a wide variety of areas. An important property of hydrates that makes them attractive for use in gas storage and transportation is their very high gas-to-sol id ratio. In addition to the high gas content, gas hydrates are remarkably stable. The main barrier to development of gas hydrate technology is the lack of an effective mass production method of gas hydrate in solid form. In this study, some performance comparison among several cases classified by different volume sizes of solution were carried to identify the characteristics due to the volume increment. And it is found that one of the main reasons disturbing hydrate formation is related to the lack of cooling heat transfer due to the volume increase of the solution. So, three kinds of heat transfer plates which have different shapes and cross sectional areas were made and tested for the performance comparison following to the shape and area of each plate. Finally it is clarified that the heat transfer is one of the major factors effecting hydrate formation performance and the installation of heat transfer plate can enhance the formation performance especially not in terms of the quantity but the speed.

  • PDF