• Title/Summary/Keyword: New and Renewable Power Generation

Search Result 488, Processing Time 0.037 seconds

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

Brief Review of Silicon Solar Cells (실리콘 태양전지)

  • Yi, Jun-Sin
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Photovoltaic (PV) technology permits the transformation of solar light directly into electricity. For the last five years, the photovoltaic sector has experienced one of the highest growth rates worldwide (over 30% in 2006) and for the next 20 years, the average production growth rate is estimated to be between 27% and 34% annually. Currently the cost of electricity produced using photovoltaic technology is above that for traditional energy sources, but this is expected to fall with technological progress and more efficient production processes. A large scale production of solar grade silicon material of high purity could supply the world demand at a reasonably lower cost. A shift from crystalline silicon to thin film is expected in the future. The technical limit for the conversion efficiency is about 30%. It is assumed that in 2030 thin films will have a major market share (90%) and the share of crystalline cells will have decreased to 10%. Our research at Sungkyunkwan University of South Korea is confined to crystalline silicon solar cell technology. We aim to develop a technology for low cost production of high efficiency silicon solar cell. We have successfully fabricated silicon solar cells of efficiency more than 16% starting with multicrystalline wafers and that of efficiency more than 17% on single crystalline wafers with screen printing metallization. The process of transformation from the first generation to second generation solar cell should be geared up with the entry of new approaches but still silicon seems to remain as the major material for solar cells for many years to come. Local barriers to the implementation of this technology may also keep continuing up to year 2010 and by that time the cost of the solar cell generated power is expected to be 60 cent per watt. Photovoltaic source could establish itself as a clean and sustainable energy alternate to the ever depleting and polluting non-renewable energy resource.

A Study on the External Fault Performance Evaluation of Grid-Connected Power Conditioning System for Residential Fuel Cell System (가정용 연료전지시스템 계통연계형 전력변환장치의 외부사고 성능평가에 관한 연구)

  • Lee, Jung-Woon;Seo, Won-Seok;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.131-131
    • /
    • 2009
  • 최근 환경규제가 강화되면서 친환경적인 전력생산 요구 등의 외부환경 변화에 따른 우리나라의 전력구조가 기존의 중압 집중형 발전을 탈피한 분산전원 발전에 대한 관심이 증대되고 있는 실정이다. 특히, 분산전원으로서의 전력생산은 공급의 안전성, 경쟁력 및 에너지의 지속성 등이 요구되어지는데, 재생에너지가 가지고 있는 에너지 지속성의 한계 및 설치의 제약성을 탈피할 수 있는 시스템으로 현재 연료전지시스템이 가장 근접해 있는 실정이다. 즉, 도시가스 인프라가 우수하고 인구조밀 지역이 많은 우리나라의 특성상 각 가정 및 건물에 쉽게 설치하고 공급의 안전성을 갖는 건물용 연료전지는 최근 가장 각광받고 있는 분산전원 시스템 중의 하나이다. 올해부터 모니터링사업의 일환으로 수용가에 설치 될 연료전지 시스템이 얼마나 안정적으로 전기와 열을 각 가정에 공급하고 시스템의 안전성을 확보하는 가는 건물용 연료전지의 분산전원으로서의 가능성 및 국민의 수용성을 증대시키는 중요한 역할을 할 것이다. 연료전지시스템은 상용전력과 연계되어 있기 때문에 시스템의 안정성 뿐만 아니라 상용전력의 변화에 대응하여 안정적인 운전을 하는지에 대한 평가가 필수적이다. 이에 따라 본 연구에서는 가정용 연료전지시스템의 성능 및 안전성평가의 일환으로 계통연계형 전력변환장치의 성능 및 안전성을 평가 하고자 한다. 연료전지 검사를 위한 계통연계형 전력변환장치의 시험평가 항목으로는 크게 정상특성성능시험, 보호기능성능시험, 과도응답특성성능시험 및 외부사고성능시험 등으로 나뉘어진다. 본 연구에서는 외부사고 성능시험 항목들인 출력측 단락시험, 계통전압 순간정전?순간강하시험 및 부하차단 시험 등을 통하여 외부사고에 대한 성능 및 안전성을 평가하였다. 외부사고 성능시험의 주 목적은 시스템의 이상 운전이 아니라 외부의 영향에 따른 시스템의 안전성 및 전력품질을 평가한다. 출력측 단락시험을 수행하기 위해서 전력변환장치를 정격 출력 전압, 정격 출력 주파수 및 정격 출력에서 운전한 후, 교류 전원장치는 단락 전류를 검출하여, 사고 발생 후 0.3초 이내에 개방하도록 설정하였다. 여기서, 단락 저항 Rsc를 정격 전류의 10배 이상에 해당하는 부하와 같은 값으로 설정하였다. 스위치 SWSC를 폐로하여 단락 상태를 만들며, 이 때 전력변환장치의 출력전류와 차단 또는 정지 시간을 측정하였다. 실험 결과에 대한 판정기준은 단락전류를 검출하여 0.5초 이내에 개폐기 개방 또는 게이트 블록 기능이 동작하여 시스템을 안정하게 정지시키고 시스템 어떤 부위에도 손상이 없어야 한다. 실험 결과 파워컨디셔너의 출력전류 및 차단 또는 정지된시간이 40ms로 나타났고, 출력전류의 파형도 매우 안정함을 볼 수 있었다. 이와 같이 모든 실험을 수행한 결과 외부사고에 대하여 시스템이 안전하게 정지하는 등 연료전지 시스템의 안전성을 확인하였다.

  • PDF

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

A National Vision of the Hydrogen Economy and Action Plan ('친환경 수소경제' 구현을 위한 마스터플랜 - 연료전지산업 및 중장기 신.재생에너지 개발비전 -)

  • Boo Kyung-Jin
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.83-95
    • /
    • 2006
  • This study is to establish a national vision of the hydrogen economy and design a roadmap to materialize it. A goal is set to supply 15% of final energy consumption with hydrogen energy in Korea by 2040. Selecting the transportation sorter as the main target, more than 50% of vehicles on the road will be replaced with fuel cell vehicles (FCVs) while $20{\sim}30%$ of electricity demand in the residential and commercial sectors might be replaced with power generation by fuel cells. If this goals were attained as planned, primary energy demand would be reduced by 9%, resulting in improved energy mix in which fossil fuel consumption is greatly reduced whereas renewable energy increases by 47%. Furthermore, GHG emissions will be reduced by 20% and self-sufficiency in energy is enhanced up to 23%. If the hydrogen economy is to materialize, the government needs to implement institutional arrangements such as new legislations, organizations, and fiscal measures to facilitate the process. In addition, the private sector's participation is highly recommended to mobilize fund needed for the huge investment to build an infrastructure in preparation for the hydrogen economy. Arrangements for codes and standards are also required to promote industrialization of fuel cells and hydrogen production and consumption.

A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System (5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구)

  • Kim, Ji-Hye;Lee, Eun-Kyung;Kim, Min-Woo;Oh, Gun-Woo;Lee, Jung-Woon;Kim, Woo-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.65-75
    • /
    • 2018
  • The wind energy produced at night is being discarded because of the excess power generated at night compared to daytime. To solve this problem, In this study, we analyzed the evaluation contents for evaluation of domestic and overseas water electrolysis systems and drew contents for safety performance contents test of the water electrolysis system based on the evaluation contents. The test contents produced the efficiency measurement test, the hydrogen generated pressure test, and the hydrogen purity test. And the safety performance evaluation of the alkaline water electrolysis system of $5Nm^3/hr$ was performed based on the results. As a result, the hydrogen generation was calculated as $5.10Nm^3/hr$ and the stack efficiency was $4.97kWh/Nm^3$. The purity of the hydrogen generated was 99.993% and it was confirmed that it produced high purity hydrogen. I think will help us assess and build safety performance of water electrolysis systems in the future.

A Study on the Power Supply and Demand Policy to Minimize Social Cost in Competitive Market (경쟁시장 하에서 사회적 비용을 고려한 전력수급정책 방향에 관한 연구)

  • Kwon, Byung-Hun;Song, Byung Gun;Kang, Seung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.14 no.4
    • /
    • pp.817-838
    • /
    • 2005
  • In this paper, the resource adequacy as well as the optimum fuel mix is obtained by the following procedures. First, the regulation body, the government agency, determine the reliability index as well as the optimum portfolio of the fuel mix during the planning horizon. Here, the resources with the characteristics of public goods such as demand-side management, renewable resources are assigned in advance. Also, the optimum portfolio is determined by reflecting the economics, environmental characteristics, public acceptance, regional supply and demand, etc. Second, the government announces the required amount of each fuel-type new resources during the planning horizon and the market participants bid to the government based on their own estimated fixed cost. Here, the government announces the winners of the each auction by plant type and the guaranteed fixed cost is determined by the marginal auction price by plant type. Third, the energy market is run and the surplus of each plant except their cost (guaranteed fixed cost and operating cost) is withdrew by the regulatory body. Here, to induce the generators to reduce their operating cost some incentives for each generator is given based on their performance. The performance is determined by the mechanism of the performance-based regulation (PBR). Here the free-riding performance should be subtracted to guarantee the transparent competition. Although the suggested mechanism looks like very regulated one, it provides two mechanism of the competition. That is, one is in the resource construction auction and the other is in the energy spot market. Also the advantages of the proposed method are it guarantee the proper resource adequacy as well as the desired fuel mix. However, this mechanism should be sustained during the transient period of the deregulation only. Therefore, generation resource planning procedure and market mechanisms are suggested to minimize possible stranded costs.

  • PDF