• Title/Summary/Keyword: New alternative fuel

Search Result 238, Processing Time 0.022 seconds

CFD Approach on Gas Explosion for SIL in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.195-200
    • /
    • 2015
  • It is envisaged that the effect of increasingly stricter air emissions legislation implemented through IMO Annex VI and other local air quality controls, together with favorable financial conditions for the use of natural gas instead of liquid fuel oil as a bunker fuel, will see an increasing number of DF engine and single gas fuel engine applications to LNG carriers and other vessel types. As part of provision for the current international movements in the shipping industry to reduce GHG emission in air, new design concepts using natural gas as an alternative fuel source for propulsion of large commercial vessels, have been developed by shipyards and research institutes. In this study, an explosion analysis for a gas supply machinery room of LNG-fuelled container ship is presented. The gas fuel concept is employed for the high pressure ME-GI where a leakage in the natural gas double supply pipe to the engines is the subject of the present analysis. The consequences of a leak are simulated with computational fluid dynamics (CFD) tools to predict typical leak scenarios, gas cloud sizes and possible explosion pressures. In addition, capacity of the structure which is subject to explosion loads has been assessed.

An Experimental Study on Hydrocarbon Emission Characteristics of Hydrogen Enriched LPG Fuel in a LPG Engine at Cold Start (LPG 기관의 수소 분사비율에 따른 냉간시동시 미연탄화수소 배출 특성에 관한 실험적 연구)

  • LEE, YEONGJAE;KIM, HYUNGKEUN;BANG, TAESEOK;LEE, JAEWOONG;CHO, YONGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in a LPG engine. An experimental study was carried out to obtain fundamental data for the emit HC emission characteristics at cold start of pre-mixed LPG and hydrogen in a LPG engine with various fractions of hydrogen-LPG blends. To maintain equal volume ratio of fuel blend, the amount of HC was decreased as hydrogen was gradually added. The results showed that as hydrogen increases, in-cylinder pressure increased. Also emission of unburned hydrocarbon (HC) is sharply decreased.

Performance and Emissions Characteristics of Agricultural Generator and Air Heater using DME Fuel (DME를 이용한 농업용 온풍기와 발전기의 성능 및 배출가스 특성 연구)

  • KIM, SHIN;MIN, KYOUNIL;PARK, CHEUNKYU;LEE, HYUNCHAN;NA, BYUNGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.431-440
    • /
    • 2016
  • Electric or hydrogen energy source is expected to solve a various issues including energy security and exhaust pollution. However, it is required a lot of time and a variety of development to apply for commercialization. Therefore, it is needed to translation fuels between the future and the present. DME (Dimethyl Ether) can play a reduce exhaust emission from medium- to heavy-duty engines that are mostly used in commercial sector. It have applied to the DME fuel as a various alternative fuel including power generation in many countries. Especially, it is necessary to secure the energy of energy-poor areas that are widely distributed around the world. And Korea also has the energy-poor areas due to geographical characteristics. These areas has been covered by their own energy through some small diesel generators, diesel boiler etc. If DME fuels are supplied in new demand such as rural sector with energy poor area, DME fuel will be available in the wider sector. In this study, it investigated performance and emission characteristics of agricultural generator and air heater using DME fuel. So the existing equipment of generator and air heater was modified to apply DME fuel. And combustion characteristics and properties of exhaust gas according to the contents of the DME fuel were evaluated. DME fuel showed a potential application in agricultural generator and air heater.

An Experimental Study on the Performance and Emission Characteristics with Hydrogen Enrichment in a CNG Engine (수소첨가 CNG기관의 성능 및 배출가스 특성에 관한 실험적 연구)

  • Ryu, Kyuhyun;Kim, Ingu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.164-169
    • /
    • 2015
  • Recent research has focused on alternative fuel to improve engine performance and to comply with emission regulation. Finding an alternative fuel and reducing environment pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched CNG fuel in SI engine and is to clarify the effects of hydrogen enrichment in CNG fuelled engine on exhaust emission and performance. An experimental study was carried out to obtain fundamental data for performance and emission characteristics of hydrogen enrichment in SI engine. The experiment was conducted at 2500 rpm, bmep 2 bar, 4 bar conditions while CNG fuel was mixed with 10, 20 and 30% hydrogen blends. From the experimental results, combustion duration was shortened due to rapid flame propagation velocity of hydrogen and these were attributed to the burning velocity increasing exponentially with increasing hydrogen blending ratio. Hydrogen has much wider flammable limit than methane, gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustion. By adding hydrogen, $CO_2$ and HC were reduced. However, $NO_X$ was increased dut to high rate of heat release for hydrogen substitutions.

Study on Comparison of Nenewable Fuel Standard Policy on Global (해외 신재생연료 의무혼합제도 비교분석 연구)

  • Lim, Eui Soon;Kim, Jae-Kon;Jung, Choong-Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.150.1-150.1
    • /
    • 2011
  • The global rise of greenhouse gas(GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. Renewable fuel policies were historically motivated by energy security concerns, and to promoted agricultural industries. In the last decade, biofuels have also been discussed as low or net-zero carbon soures of energy for transportation. Hence, the development of biofuels has been supported by a range of policy instruments, including volumetric targets or blending mandates, tax incentives or penalties, preferential government purchasing, government funded research, development in world-wide. As one of the most powerfuel instruments, renewable fuel mandates require fuel producers to produce a pre-defined amount(or share) of biofuels and blend them with petroleum fuel. In this study, we reviewed Renewable Fuel Standard(RFS, USA), Renewable Transport Fules Obligation (RTFO, UK) as a renewable fuel mandate policy to reduce GHG. This includes not only mandate system for blending of biofuels in transport fuels, but also sustainability to use biofuels in this system.

  • PDF

Acetone Solvolysis of a Siberian Spruce Biomass (시베리아산 전나무 바이오매스의 아세톤 용매분해반응)

  • Yoon, Sung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.55-63
    • /
    • 2009
  • In this study, thermochemical degradation by acetone solvolysis reaction of siberian spruce wood was investigated for a temperature range of $200{\sim}400^{\circ}C$. The liquid products by acetone solvolysis from siberian spruce wood produced various kinds of aliphatics, cyclic compounds and aromatics included phenols etc. Combustion heating value of liquid products by acetone solvolysis conversion processes was in the range of $8,010{\sim}8,180cal/g$. The energy yield in acetone solvolysis of siberian spruce wood was as high as 74.2% after 40min of reaction at $400^{\circ}C$. The liquid products from the thermochemical conversion of siberian spruce wood could be used as high-octane-value fuels and fuel additives.

Pyrolysis-Liquefaction of a Siberian Spruce Biomass (시베리아산 전나무 바이오매스의 열분해-액화반응)

  • Yoon, Sung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.430-438
    • /
    • 2008
  • Siberian spruce, found in the northern temperature and boreal regions of the earth, is usable biomass as fuels. In this study, parameters of thermochemical degradation by pyrolysis-liquefaction reaction of siberian spruce such as the effect of reaction temperature, reaction time and degradation products and energy yields were investigated. The liquid products from pyrolysis-liquefaction of siberian spruce contained various kinds of cyclicketones, cresols, dimethyl phenols and benzenediols. Combustion heating value of liquid products from pyrolysis-liquefaction conversion processes was in the range of $7,650{\sim}7,800cal/g$. The energy yield in pyrolysis-liquefaction of siberian spruce was as high as 69.5% after 40min of reaction at $400^{\circ}C$. The liquid products from the thermochemical conversion of siberian spruce could be used as high octane value fuels and fuel additives.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Analysis on the Technology R&D of the Fuel Cell Systems for Power Generation in Ships (선박 동력발생용 연료전지시스템 기술개발의 전망에 대한 고찰)

  • Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.924-931
    • /
    • 2007
  • Now, there are two big issues threatening global society, which are the depletion of fossil fuels and the environmental disruption. Therefore, marine diesel engine, taking up over 95% share of the marine power market, has met the environmental and economical problems, too. These problems have caused a necessity of new, alternative power systems in ships and fuel cell systems has been playing a central role as one of the alternatives. This paper analyzes the characteristics of marine fuel cell systems, R&D trends of advanced countries, and mapping out R&D strategy of Korea.

Innovative step-up direct current converter for fuel cell-based power source to decrease current ripple and increase voltage gain

  • Salary, Ebrahim;Falehi, Ali Darvish
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.695-707
    • /
    • 2022
  • As for the insufficient nature of the fossil fuel resources, the renewable energies as alternative fuels are imperative and highly heeded. To deliver the required electric power to the industrial and domestic consumers from DC renewable energy sources like fuel cell (FC), the power converter operates as an adjustable interface device. This paper suggests a new boost structure to provide the required voltage with wide range gain for FC power source. The proposed structure based on the boost converter and the quazi network, the so-called SBQN, can effectively enhance the FC functionality against its high operational sensitivity to experience low current ripple and also propagate voltage and current with low stress across its semiconductors. Furthermore, the switching power losses have been decreased to make this structure more durable. A full operational analysis of the proposed SBQN and its advantages over the conventional and famous structures has been compared and explained. Furthermore, a prototype of the single-phase converter has been constructed and tested in the laboratory.