DOI QR코드

DOI QR Code

Innovative step-up direct current converter for fuel cell-based power source to decrease current ripple and increase voltage gain

  • Received : 2021.04.22
  • Accepted : 2022.02.05
  • Published : 2022.08.10

Abstract

As for the insufficient nature of the fossil fuel resources, the renewable energies as alternative fuels are imperative and highly heeded. To deliver the required electric power to the industrial and domestic consumers from DC renewable energy sources like fuel cell (FC), the power converter operates as an adjustable interface device. This paper suggests a new boost structure to provide the required voltage with wide range gain for FC power source. The proposed structure based on the boost converter and the quazi network, the so-called SBQN, can effectively enhance the FC functionality against its high operational sensitivity to experience low current ripple and also propagate voltage and current with low stress across its semiconductors. Furthermore, the switching power losses have been decreased to make this structure more durable. A full operational analysis of the proposed SBQN and its advantages over the conventional and famous structures has been compared and explained. Furthermore, a prototype of the single-phase converter has been constructed and tested in the laboratory.

Keywords

Acknowledgement

The authors would like to thank the associated editor and anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper.

References

  1. A. D. Falehi, Optimal fractional order BELBIC to ameliorate small signal stability of interconnected hybrid power system, Environ. Prog. Sustain. Energy, 38 (2019), 18590-18612.
  2. E. Salary, M. R. Banaei, and A. Ajami, Design of novel step-up boost DC/DC converter, Iran. J. Sci. Technol. Trans. Electr. Eng., 41 (2017), 13-22, https://doi.org/10.1007/s40998-017-0014-8
  3. C. S. Lai and M. D. McCulloch, Sizing of stand-alone solar PV and storage system with anaerobic digestion biogas power plants, IEEE Trans. Ind. Electron., 64 (2017), 2112-2121, https://doi.org/10.1109/TIE.2016.2625781
  4. F. Calise, G. D. di Vastogirardi, M. D. d'Accadia, and M. Vicidomini, Simulation of polygeneration systems, Energy 163 (2018), 290-337. https://doi.org/10.1016/j.energy.2018.08.052
  5. T. V. Kusumadewi, P. Winyuchakrit, and B. Limmeechokchai, Long-term CO2 emission reduction from renewable energy in power sector: The case of Thailand in 2050, Energy Procedia, 138 (2017), 961-966, https://doi.org/10.1016/j.egypro.2017.10.089
  6. A. D. D. Falehi and H. Torkaman, Robust fractional-order super-twisting sliding mode control to accurately regulate lithium-battery/super-capacitor hybrid energy storage system, Int. J. Energy Res., 45 (2021), no. 13, 18590-18612, https://doi.org/10.1002/er.7045
  7. A. D. Falehi, Half-cascaded multilevel inverter coupled to photovoltaic power source for AC-voltage synthesizer of dynamic voltage restorer to enhance voltage quality, Int. J. Numer. Modell. Electron. Netw. Devices Fields, 34 (2021), no. 5, e2883, https://doi.org/10.1002/jnm.2883
  8. O. Ellabban and H. Abu-Rub, An overview for the Z-source converter in motor drive applications, Renew. Sustain. Energy Rev., 61 (2016), 537-555, https://doi.org/10.1016/j.rser.2016.04.004
  9. S. Patra, N. Kishor, S. R. Mohanty, and P. K. Ray, Power quality assessment in 3-Ф grid connected PV system with single and dual stage circuits, Int. J. Electr. Power Energy Syst. 75 (2016), 275-288. https://doi.org/10.1016/j.ijepes.2015.09.014
  10. A. D. Darvish Falehi and M. Rafiee, Optimal control of novel fuel cell-based DVR using ANFISC-MOSSA to increase FRT capability of DFIG-wind turbine, Soft Comput., 23 (2019), no. 15, 6633-6655, https://doi.org/10.1007/s00500-018-3312-9
  11. A. E. Lutz, R. S. Larson, and J. O. Keller, Thermodynamic comparison of fuel cells to the Carnot cycle, Int. J. Hydrogen Energy, 27 (2002), no. 10, 1103-1111, https://doi.org/10.1016/S0360-3199(02)00016-2
  12. K. T. Lee, H. S. Yoon, and E. D. Wachsman, The evolution of low temperature solid oxide fuel cells, J. Mater. Res., 27 (2012), no. 16, 2063-2078, https://doi.org/10.1557/jmr.2012.194
  13. O. Ellabban, J. V. Van Mierlo, and P. Lataire, Control of a high-performance Z-source inverter for fuel cell/supercapacitor hybrid electric vehicles, World Electr. Veh. J., 4 (2011), no. 3, 444-451, https://doi.org/10.3390/wevj4030444
  14. M. G. Varzaneh, A. Rajaei, and M. Mardaneh, Dual-source inverter for hybrid PV-FC application, S.N. Appl. Sci., 1 (2019), 1-11, https://doi.org/10.1007/s42452-018-0001-3
  15. M. J. J. Kouhanjani, A. R. Seifi, and M. Mehrtash, Dynamic model and small signal analysis of Z-source inverter, IETE J. Res., 65 (2019), 342-350, https://doi.org/10.1080/03772063.2018.1432421
  16. M. A. Qureshi, I. Ahmad, and F. Munir, Double integral sliding mode control of continuous gain four quadrant quasi-Z-source converter, IEEE Access, 6 (2018), 77785-77795, https://doi.org/10.1109/ACCESS.2018.2884092
  17. M. Zhu and F. L. Luo, Series SEPIC implementing voltage-lift technique for DC-DC power conversion, IET. Pwr. Electr., 1 (2008), 109-121, https://doi.org/10.1049/iet-pel:20060494
  18. A. K. Deepankar and S. K. Chauhan, Integrated dual-output L-Z source inverter for hybrid electric vehicle, IEEE Trans. Transp. Electrification, 4 (2018), no. 3, 732-743, https://doi.org/10.1109/TTE.2018.2846032
  19. A. Ho and T. Chun, Single-phase modified quasi-Z-source cascaded hybrid five-level inverter, IEEE Trans. Ind. Electron., 65 (2018), 5125-5134, https://doi.org/10.1109/TIE.2017.2779419
  20. T. Li and Q. Cheng, Structure analysis and sliding mode control of new dual quasi-Z-source inverter in a microgrid, Int. Trans. Electr. Energ. Syst., 29 (2019), no. 1. https://doi.org/10.1002/etep.2662
  21. J. Liu, J. Wu, J. Qiu, and J. Zeng, Switched Z-source/quasi-Z-Source DC-DC converters with reduced passive components for photovoltaic systems, IEEE Access, 7 (2019), 40893-40903, https://doi.org/10.1109/ACCESS.2019.2907300
  22. A. B. Rey-Boue, F. Martinez-Rodrigo, N. F. Guerrero-Rodriguez, L. C. Herrero-de Lucas, and S. de Pablo, Enhanced controller for grid-connected modular multilevel converters in distorted utility grids, Electr. Pow. Syst. Res., 163 (2018), 310-327, https://doi.org/10.1016/j.epsr.2018.06.011
  23. D. Ghaderi, S. Padmanaban, P. K. Maroti, B. Papari, and J. B. Holm-Nielsen, Design and implementation of an improved sinusoidal controller for a two-phase enhanced impedance source boost inverter, Comput. Electr. Eng., 83 (2020), 106575. https://doi.org/10.1016/j.compeleceng.2020.106575
  24. L. He, J. Chen, X. Xu, B. Cheng, J. Sun, D. Guo, and J. Nai, Soft-switching voltage-Demultiplier-cell-based high step-down DC-DC converter, IEEE Trans. Power Electron., 34 (2019), no. 10, 9828-9843, https://doi.org/10.1109/TPEL.2019.2895672
  25. L. He, Z. Z. Zheng, and D. Guo, Soft-switching voltage-demultiplier-cell-based high step-down DC-DC converter, IEEE Trans. Power Electron., 33 (2018), no. 11, 9496-9505, https://doi.org/10.1109/TPEL.2018.2789456
  26. N. Ozturk, O. Kaplan, and E. Celik, Zero-current switching technique for constant voltage constant frequency sinusoidal PWM inverter, Electr. Eng., 100 (2018), 1147-1157, https://doi.org/10.1007/s00202-017-0577-4
  27. M. S. Shen, A. Joseph, J. Wang, F. Z. Peng, and D. J. Adams, Comparison of traditional inverters and Z-source inverter for fuel cell vehicles, IEEE Trans. Power Electron., 22 (2007), no. 4, 1453-1463, https://doi.org/10.1109/TPEL.2007.900505
  28. M. Shen, J. Wang, A. Joseph, F. Z. Peng, L. M. Tolbert, and D. J. Adams, Constant boost control of the Z-source inverter to minimize current ripple and voltage stress, IEEE Trans. Ind. Appl., 42 (2006), no. 3, 770-778, https://doi.org/10.1109/TIA.2006.872927
  29. X. Ding, F. Chen, M. Du, H. Guo, and S. Ren, Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter, Appl. Energy, 201 (2017), 270-283, https://doi.org/10.1016/j.apenergy.2016.10.011
  30. L. He, Z. Zheng, and D. Guo, High step-up DC-DC converter with active soft-switching and voltage-clamping for renewable energy systems, IEEE Transact. Pwr. Electron., 33 (2018), no. 11, 9496-9505, https://doi.org/10.1109/TPEL.2018.2789456
  31. H. Liu, F. Li, and J. Ai, A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system, IEEE Trans. Power Electron., 31 (2016), no. 6. https://doi.org/10.1109/TPWRD.2016.2642498
  32. M. Farhadi, M. Abapour, and M. Sabahi, Failure analysis and reliability evaluation of modulation techniques for neutral point clamped inverters-A usage model approach, Eng. Fail. Anal., 71 (2017), 90-104, https://doi.org/10.1016/j.engfailanal.2016.06.010
  33. N. Bizon, Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses, Renew. Sustain. Energy Rev., 105 (2019), 14-37, https://doi.org/10.1016/j.rser.2019.01.044
  34. A. K. Doddathimmaiah and J. Andrews, Theory, modelling and performance measurement of unitised regenerative fuel cells, Int. J. Hydrogr. Energy, 34 (2009), no. 19, 8157-8170, https://doi.org/10.1016/j.ijhydene.2009.07.116
  35. Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, A perspective on low-temperature solid oxide fuel cells, Energ. Environ. Sci., 9 (2016), no. 5, 1602-1644, https://doi.org/10.1039/C5EE03858H
  36. S. G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data Monogr., 18 (1989), 1-21, https://doi.org/10.1063/1.555839
  37. D. Thirumalai and R. E. White, Mathematical modeling of proton-exchange-membrane fuel-cell stacks, J. Electrochem. Soc., 144 (1997), no. 5, 1717-1723, https://doi.org/10.1149/1.1837667
  38. S. Rohner, S. Bernet, M. Hiller, and R. Sommer, Modulation, losses, and semiconductor requirements of modular multilevel converters, IEEE Trans. Ind. Electron., 57 (2010), no. 8, 2633-2642, https://doi.org/10.1109/TIE.2009.2031187
  39. A. Mirzaei, M. Rezvanyvardom, and M. Taati, High step-up fully soft switched interleaved Sheppard-Taylor converter with only one auxiliary switch for PV application, Sol. Energy, 177 (2019), 455-463, https://doi.org/10.1016/j.solener.2018.11.054
  40. M. Abirami, R. Denny, G. Kanimozhi, and K. Logavani, A novel hybrid DC/DC and modified quasi Z-source converter for enhanced voltage gain, Mater. Today Proc., (2020), https://doi.org/10.1016/j.matpr.2020.10.253
  41. M. Lakshmi and S. Hemamalini, Coordinated control of MPPT and voltage regulation using single-stage high gain DC-DC converter in a grid-connected PV system, Electr. Pow. Syst. Res., 169 (2019), 65-73, https://doi.org/10.1016/j.epsr.2018.12.011
  42. X. Zhu, B. Zhang, and K. Jin, Hybrid nonisolated active quasiswitched DC-DC converter for high step-up voltage conversion applications, IEEE Access, 8 (2020), 222584-222598, https://doi.org/10.1109/ACCESS.2020.3043816
  43. M. Veerachary and P. Kumar, Analysis and design of quasi-Z-source equivalent DC-DC boost converters, IEEE Trans. Ind. Applicat., 56 (2020), 6642-6656, https://doi.org/10.1109/TIA.2020.3021372
  44. P. Kumar and M. Veerachary, Analysis and design of quasi-Z-source equivalent DC-DC boost converters, IEEE J. Emerg. Selec. Top. Power Electr., 9 (2021), no. 1, 791-803, https://doi.org/10.1109/JESTPE.2019.2959078