• Title/Summary/Keyword: New Cutting System

Search Result 267, Processing Time 0.042 seconds

내장형 절삭력센서와 AE 센서를 이용한 인-프로세스 공구파괴 검출에 관한 연구

  • 최덕기;박동삼;주종남;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.344-348
    • /
    • 1992
  • This paper presents a new methodology for on-line tool breakage detection by sensor fusion concept of an acoustic-emission (AE) sensor. A built-in piezoelectric force sensor was used to measure cutting force instead of a tool dynamometer to preserve the machine tool dynamics. he sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. When a tool is broken, the explicit changes of signals' pattern take place. A burst-type AE signal increases abruptly. Followingly, a cutting force drops significantly. Therefore a burst of AE signal is used as a triggering signal to inspect the following cutting force. Significant drop of cutting force is utilized to detect tool breakage. The algorithm was implemented in a DSP board for in-process tool breakage detection. The proposed monitoring system was capable of a good applicable tool breakage detection.

A Study on Real-time Monitoing of Tool Fracture in Turning (선삭공정시 공구파손의 실시간 검출에 관한 연구)

  • Park, D.K.;Chu, C.N.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.130-143
    • /
    • 1995
  • This paper presents a new methodology for on-line tool breadage detection by sensor fusion of an acoustic emission (AE) sensor and a built-in force sensor. A built-in piezoelectric force sensor, instead of a tool dynamometer, was used to measure the cutting force without altering the machine tool dynamics. The sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. A burst of AE signal was used as a triggering signal to inspect the cutting force. A sighificant drop of cutting force was utilized to detect tool breakage. The algorithm was implemented on a DSP board for in-process tool breakage detection. Experiental works showed an excellent monitoring capability of the proposed tool breakage detection system.

  • PDF

A Development of Constant-Speed Position Controller for Solid Freeform Fabrication System (임의형상가공시스템을 위한 정속위치제어기 개발)

  • 고민국;김승우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.91-94
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in foreign some corporations including the U.S.A, have much technological problems yet and need new mode for agile prototyping. In this paper, we design algorithm that the cutting path of laser beam, on the SFFS(Solid Freeform Fabrication System), is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which was developed in this paper.

  • PDF

A Study on Diagnostics of Machining System with ARMA Modeling and Spectrum Analysis (ARMA 모델링과 스펙트럼분석법에 의한 가공시스템의 진단에 관한 연구)

  • 윤문철;조현덕;김성근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.42-51
    • /
    • 1999
  • An experimental modeling of cutting and structural dynamics and the on-line detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics of cutting process but also for the analytic realization of diagnostic systems. In this regard, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision round shape machining such as turning, drilling and boring in mold and die making. In this study, simulation and experimental work were performed to show the malfunctioned behaviors. For this purpose, two new recursive approach (REIVM, RLSM) were adopted fur the on-line system identification and monitoring of a machining process, we can apply these new algorithm in real process for the detection of abnormal machining behaviors such as chipping, chatter, wear and round shape lobe waviness.

  • PDF

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

Chip Load Control Using a NC Verification Model Based on Z-Map (Z-map 기반 가공 검증모델을 이용한 칩부하 제어기)

  • Baek Dae Kyun;Ko Tae Jo;Park Jung Whan;Kim Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2005
  • This paper presents a new method for the optimization of feed rate in sculptured surface machining. A NC verification model based on Z-map was utilized to obtain chip load according to feed per tooth. This optimization method can regenerate a new NC program with respect to the commanded cutting conditions and the NC program that was generated from CAM system. The regenerated NC program has not only the same data of the ex-NC program but also the updated feed rate in every block. The new NC data can reduce the cutting time and produce precision products with almost even chip load to the feed per tooth. This method can also reduce tool chipping and make constant tool wear.

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (III) - Variation of the Main Cutting Force and Life of Cutting Tool by LAM of SSN and HIPSN - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (III) - SSN 및 HIPSN의 예열선삭시 절삭력 및 공구수명의 특성 -)

  • Kim, Jong-Do;Lee, Su-Jin;Kang, Tae-Young;Suh, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.35-39
    • /
    • 2010
  • Generally, ceramic material is very difficult to machine due to high strength and hardness. However, ceramic material can be machined at high temperature by plastic flow as metallic material due to the deterioration of the grain boundary glassy phase. Recently, a new method was developed to execute cutting process with CBN cutting tool by local heating of surface with laser. There are various parameters in LAM because it is a complex process with laser treatment and machining. During laser assisted machining, high power results in reducing of cutting force and increasing tool life, but excessive power brings oxidation of the surface. The effect of laser power, feed rate, cutting depth and etc. were investigated on the life of cutting tool. Chips were observed to find out suitable machining conditions. Chips of SSN had more flow-types than HIPSN. It means SSN is easier to machining. The life of cutting tool was increased with increasing laser power and decreasing feed rate and cutting depth.

Determination of Cutting Parameters Considering Machining Safety in Milling Operation (밀링작업에서 가공 안전성을 고려한 가공조건의 결정)

  • Park, Byoung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.116-121
    • /
    • 2006
  • In metal cutting processes, cutting conditions have an influence on reducing the production cost and deciding the quality of a final product. Process planners usually make modification to recommended cutting parameters obtained from machining data handbooks in order to satisfy requirements for individual operation. The modified cutting parameters also need to be examined for the safe machining. In this paper, a new operation planning system that allows the generation and check of modified cutting parameters is proposed for the milling process. A neural network methodology is introduced to identify mathematical models for generation of the modified cutting parameters, and several simplified rules and equations are presented for the check of the cutting parameters. Finally, the results are demonstrated with an example part.

Feedrate Optimization Using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;정태성;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.