• 제목/요약/키워드: New Breeding Techniques

검색결과 46건 처리시간 0.025초

Current status on applications of conventional breeding techniques and biotechnological system in ornamentals

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • 제47권2호
    • /
    • pp.107-117
    • /
    • 2020
  • Flower industry is now growing due to the development of economy in many countries. Simultaneously, needs from consumers in flower market are varied widely. To satisfy the needs from consumers and deal with a variety of diseases from a lots of pathogens as well as climate change, new elite flower cultivars should be released in flower market. For this purpose, conventional and biotechnological techniques can be employed to make good cultivar. Therefore, this review describes the general overview of flower breeding techniques including cross-hybridization, mutation breeding and genetic transformation systems. Also, breeding systems for ornamentals derived from plant tissue culture such as embryo culture, in vitro fertilization, ovary/ovule culture and haploid production were reviewed. Furthermore, in this study recent development of the generation of new flower cultivars using marker-assisted breeding, plant transformation including particle bombardment and Agrobacterium tumefaciens as well as genome-editing technology were described. This review will be contributed to the development and releasement of new flower cultivars with horticulturally useful traits in the future.

신육종기술의 규제 전망 및 문제점 (Trends in the global regulation of new breeding techniques and perspective)

  • 김동헌;서승만;김지영;김해영
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.305-314
    • /
    • 2018
  • 'New Breeding Techniques (NBTs)' have been one of hot issues, since their future will be affected profoundly by national as well as international regulatory landscapes. In this review, we compare characteristics of NBTs with conventional and genetic modification, and analyze genetically modified organism (GMO) regulatory systems in the context of possible regulation of NBTs. NBTs are very heterogeneous in terms of principles, methodologies, and final products. As Living Modified Organisms (LMO) is defined in the Cartagena Protocol on Biosafety (CPB) as an organism containing novel combination of genetic materials obtained by the use of modern biotechnology, CPB as well as other national legislations locate itself somewhere in the middle between product-based and process-based regulations. It is also noted that jurisdictions with regulatory systems more oriented to product-based one tend to be more productive and decide or may decide to exempt site-directed nucleases-1 from GMO regulation. In this context, Korean legislations are reviewed to clarify the commons and differences in GMO definitions. Act on Transboundary Movement of LMO Act, Food Sanitation Act and Agricultural and Fishery Products Quality Control Act are three major acts to regulate GMOs. It is noted that there are differences in the definition of LMO or GM food/products especially between the LMO Act and the Food Sanitation Act. Such differences may cause conflicts between Acts when policy-decision regarding the regulation of NBTs is made. Therefore, it is necessary to reorganize legislations before policies regarding the regulation of any techniques from biotechnology are made.

심비디움 육종, 조직배양 및 형질전환 연구동향에 관한 고찰 (Review on breeding, tissue culture and genetic transformation systems in Cymbidium)

  • 이유미;김미선;이상일;김종보
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.357-369
    • /
    • 2010
  • Cymbidium is horticulturally important and has been one of the most commercially successful orchid plants as well as cut flowers around the world including Korea. Up to now, a huge number of elite Cymbidium cultivars have been released on the commercial market via cross-hybridization, mutation and polyploidization breeding techniques. To investigate on breeding system in Cymbidium, we inquired the brief history and techniques of breeding and the current status on Cymbidium breeding in Korea. Also, the general propagation process of elite Cymbidium lines via tissue culture should be presented. However, the slow process of conventional breeding and the lack of useful genes in Cymbidium species delays the introduction of new cultivars to the commercial market. To solve these limitations, efficient regeneration and genetic transformation systems should be established in the improvement of Cymbidium breeding program. During the last several decades, some progress has been made in tissue culture and genetic transformation in Cymbidium species. We review the recent status of tissue culture and genetic transformation systems in Cymbidium plants.

Inhibitors Targeting ABA Biosynthesis and Catabolism Can Be Used to Accurately Discriminate between Haploid and Diploid Maize Kernels during Germination

  • Kwak, Jun Soo;Kim, Sung-Il;Song, Jong Tae;Ryu, Si Wan;Seo, Hak Soo
    • Plant Breeding and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.204-212
    • /
    • 2017
  • There is a growing preference for using doubled haploids (DHs) in maize breeding programs because they reduce the time required to generate and evaluate new lines to 2 years or less. However, there is an urgent need for efficient techniques that accurately discriminate between haploid and diploid maize kernels. Here, we investigate the effects of several hormones and chemicals on the germination of haploid and diploid maize kernels, including auxin, cytokinin, ethylene, abscisic acid (ABA) biosynthesis inhibitor (fluridone), ABA catabolism inhibitor (diniconazole), methyl jasmonate (MeJA), and NaCl. Ethylene effectively stimulated the germination of both haploid and diploid maize kernels. The ABA biosynthesis inhibitor fluridone, the ABA catabolism inhibitor diniconazole, and MeJA selectively stimulated the germination of haploid maize kernels. By contrast, gibberellin, 1-naphthaleneacetic acid (NAA), kinetin, and NaCl inhibited the germination of both haploid and diploid maize kernels. These results indicate that the germination of haploid maize kernels is selectively stimulated by fluridone and diniconazole, and suggest that ABA-mediated germination of haploid maize kernels differs from that of diploid maize kernels and other plant seeds.

식량생산능력 향상을 위한 농작물 육종전략 (Breeding Strategies to Increase Production Potential of Major Food Crops in Korea)

  • 김광호;김석동;박문웅;문헌팔
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 1999년도 추계 학술대회지
    • /
    • pp.80-101
    • /
    • 1999
  • Self-sufficiency ratio of food crops in Korea is estimated under $20{\%}$ in 2010 because total food consumption including feed will be increased. but food grain production will be decreased. It is necessary to maintain the optimum level of food self-sufficiency rate to secure national food demand/supply balance and non-trade and multiple function of agriculture in Korea. It will be possible to produce more food grains having the acceptable quality if the appropriate policy and cropping techniques are developed and practised in future. Breeding for high yielding varieties should be the first target to raise the production potential of food crops . Number of varieties developed during last 30 years is counted as 353 in food crops. New varieties developed in 1990s showed the higher yield potential and the improved agronomic characteristics compared with 1970s and 1980s varieties. But number of varieties planted on the farmer's field over $5{\%}$ of national planting area is less than one third of total varieties developed Breeding efforts to maintain planting area of main food crops should be focussed on consumer's demand and farmer's need. They are the best quality variety in each field of crop utilization, the newly designed variety adapting to changes of natural, rural and cropping environment, and the higher yielding variety. It is also needed to develop new quality crop varieties for inducing more consumption of crop grain produced in Korea for direct food or processing. Development of barley varieties for animal feed. high income soybean varieties, high quality wheat variety. and super yielding rice and barley varieties are also needed to keep or maximize national food production potential. In order to establish the appropriate cropping technique for domestic food security, the strong and continuous interest and financial support on crop breeding are required, and the inter-disciplinary and inter-institutionary researches should be strengthened for successful crop breeding.

  • PDF

좀비비추[Hosta minor (Baker) Nakai] '늘푸름 1' 육성 (New Cultivar Breeding of Hosta minor 'Neulpureum 1')

  • 고충호;이종석;김현진;이정호;이기철;이승연;김상용
    • 한국자원식물학회지
    • /
    • 제31권4호
    • /
    • pp.419-422
    • /
    • 2018
  • '늘푸름 1 (Neulpureum 1)'은 국립수목원에서 육종한 품종으로, 좀비비추와 원예품종인 Hosta 'Krossa Regal'을 교잡 후 얻은 개체를 특성에 따라 선발하여 육종하였다. 선발은 잎의 색이 진하고 잎에 존재하는 굴곡의 크기가 작은 개체를 기준으로 하여 선발하였다. 그 결과 대조품종에 비해 짙은 녹색을 유지하는 기간이 길고, 초장이 짧으며, 풍부한 잎을 가지고 있는 개체가 선발되었다. 이렇게 선발된 개체는 무성증식방법으로 개체수를 늘렸으며, 3년간 재배하며 특성을 고정 및 조사하였다. 이렇게 육종된 '늘푸름 1 (Neulpureum 1)'은 가지고 있는 특징 때문에 반음지의 지피용 뿐만 아니라 분화용으로도 이용될 수 있는 만큼 활용적 가치가 매우 높은 신품종이다.

Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis

  • Wang, Di;Wei, Yiyuan;Shi, Liangyu;Khan, Muhammad Zahoor;Fan, Lijun;Wang, Yachun;Yu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.203-211
    • /
    • 2020
  • Objective: Staphylococcus aureus (S. aureus) is one of the major microorganisms responsible for subclinical mastitis in dairy cattle. The present study was designed with the aim to explore the DNA methylation patterns using the Fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) techniques in a S. aureus-infected mouse model. Methods: A total of 12 out-bred Institute of Cancer Research female mice ranging from 12 to 13 weeks-old were selected to construct a mastitis model. F-MSAP analysis was carried out to detect fluctuations of DNA methylation between control group and S. aureus mastitis group. Results: Visible changes were observed in white cell counts in milk, percentage of granulocytes, percentage of lymphocytes, CD4+/CD8+ ratio (CD4+/CD8+), and histopathology of mice pre- and post-challenge with S. aureus. These findings showed the suitability of the S. aureus-infected mouse model. A total of 369 fragments was amplified from udder tissue samples from the two groups (S. aureus-infected mastitis group and control group) using eight pairs of selective primers. Results indicated that the methylation level of mastitis mouse group was higher than that in the control group. In addition, NCK-associated protein 5 (Nckap5) and transposon MTD were identified to be differentially methylated through secondary polymerase chain reaction and sequencing in the mastitis group. These observations might play an important role in the development of S. aureus mastitis. Conclusion: Collectively, our study suggests that the methylation modification in Nckap5 and transposon MTD might be considered as epigenetic markers in resistance to S. aureus-infected mastitis and provided a new insight into S. aureus mastitis research in dairy industry and public health.

The application of new breeding technology based on gene editing in pig industry - A review

  • Tu, Ching-Fu;Chuang, Chin-kai;Yang, Tien-Shuh
    • Animal Bioscience
    • /
    • 제35권6호
    • /
    • pp.791-803
    • /
    • 2022
  • Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU's Green Deal and biodiversity strategies and even meet the United Nations' sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.

New strategies for germ cell cryopreservation: Cryoinjury modulation

  • Sang-Eun Jung;Buom-Yong Ryu
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권4호
    • /
    • pp.213-222
    • /
    • 2023
  • Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • 한국초지조사료학회지
    • /
    • 제34권3호
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.