• Title/Summary/Keyword: Neutrons

Search Result 311, Processing Time 0.023 seconds

The apoptotic fragment assay in rat peripheral lymphocytes and crypt cells with whole body irradiation with 60Co ϒ-rays and 50 MeV cyclotron fast neutrons (코발트-60 감마선과 50 MeV 싸이크로트론 고속 중성자선에 전신조사된 랫드의 말초 임파구와 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.203-210
    • /
    • 2001
  • Here, we compared the effectiveness of 50 MeV($p{\to}RBe^+$) cyclotron fast neutrons versus $^{60}Co$ ${\gamma}$-rays by the apoptotic fragment frequency in both rat peripheral lymphocytes and crypt cells to check a radiobiological endpoint. The incidence of apoptotic cell death was increased in all irradiated groups, and radiation at all doses trigger rapid changes in both crypt cells and peripheral lymphocytes. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for these data of apoptotic fragments frequencies was $y=0.3+(6.512{\pm}0.279)D(r^2=0.975)$ after neutrons, while $y=0.3+(4.435{\pm}0.473)D+(-1.300{\pm}0.551)D^2(r^2=0.988)$ after ${\gamma}$-rays. In addition, $y=3.5+(118.410{\pm}10.325)D+(-33.548{\pm}12.023)D^2(r^2=0.992)$ after ${\gamma}$-rays in rat lymphocytes. A significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic cells with increasing dose. Dose-response curves for high and low linear energy transfer (LET) radiation modalities in these studies were different. The relative biological effectiveness (RBE) value for crypt cells was 1.919. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morphological findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis induction in both crypt cells and peripheral lymphocytes could be a useful endpoint of rat model for studying screening test and microdosimetic indicator to evaluate the biological effects of radiation-induced cell damage.

  • PDF

Optimal Control of Xenon Poison In Nuclear Reactor (원자로에 있어서 Xenon 독소의 최적제어)

  • 곽은호;고병준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.5
    • /
    • pp.17-23
    • /
    • 1976
  • The buildup of fission product, i.e. Xe-135 poisoning, is a prime factor in restarting a nuclear reactor from the shutdown, which was under normal operation in the high flux thermal reactor, It is caused by the high absorption crosssection of Xe-135 to thermal neutrons and its long half life, from which the thermal power is affected. It is then possible to restart a nuclear reactor after the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.

  • PDF

Study of the Nondestructive Test Method for the Embrittlement Evaluation of Nuclear Reactor Vessel Material by $M{\ddot{o}}ssbauer$ Spectroscopy ($M{\ddot{o}}ssbauer$ 분광법에 의한 원자로 용기재료의 비파괴적 중성자 조사평가에 대한 연구)

  • Jung, M.M.;Jang, K.S.;Yoo, K.B.;Kim, G.M.;Yoon, I.S;Hong, C.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.183-190
    • /
    • 2000
  • The purpose of this study is to evaluate the magnetic property change of the nuclear reactor vessel steel irradiated by fast neutrons using $M{\ddot{o}}ssbauer$ spectroscopy, and the effects of the defects produced by neutron irradiation on the changes using X-ray diffraction. The specimens, fabricated with the dimension of $23mm{\times}18mm{\times}70{\mu}m$, were irradiated by neutron fluence from $10^{12}n/cm^2\;to\;10^{18}n/cm^2$ at 343K. Throughout the experiments, it is understood that (1) the X-ray diffraction measurement shows that the change of crystal nature is started at the irradiation of $10^{16}n/cm^2$ and a crystal structure has been severely damaged at the irradiation over $10^{17}n/cm^2$, (2) the analysis of the $M{\ddot{o}}ssbauer$ spectra has shown that magnetic transition phenomena occur at the irradiation over $10^{17}n/cm^2$ and (3) both methods can be utilized as nondestructive test methods for the embrittlement evaluation of materials irradiated by fast neutrons.

  • PDF

Neutron Shielding Performance of Mortar Containing Synthetic High Polymers and Boron Carbide (합성 고분자 화합물 및 탄화붕소 혼입에 따른 모르타르의 중성자 차폐성능 분석)

  • Min, Ji-Young;Lee, Bin-Na;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Concrete walls of neutron generating facilities such as fusion reactors and fission reactors become radioactive by neutron irradiation. Both low-activation and neutron shielding are a critical concern at the dismantling stage after the shutdown of facilities with a requirement of radioactive waste management. To tackle this, two types of additives were investigated in fabricating mortar specimens: synthetic high polymers and boron carbide. It is well known that a hydrogen atom is effective in neutron shielding by an elastic scattering because its mass is almost the same as that of the neutron. And boron is an effective neutron absorber with a big neutron absorption cross section. In this study, the effect of the type, shape, and size of polymers were investigated as well as that of boron carbide. Total 16 mix designs were prepared to reveal the effect of polymers on mechanical properties and neutron shielding performance. The neutron does equivalent of polymers-based mortar for fast neutrons decreased by 36 %, and the count rate of boron carbide-based mortar with regard to thermal neutrons decreased by 90 % compared to conventional mortar. These results showed that a combination of polymers and boron carbide compounds has potential to reduce the thickness of neutron shields as well as radioactive waste from reactors.

The Characteristics for BNCT facility in Hanaro Reactor

  • Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.161-163
    • /
    • 2002
  • The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of $\^$6/Li$_2$CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$10$\^$8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to ${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment.

  • PDF

Development of Neutron Skyshine Evaluation Method for High Energy Electron Accelerator Using Monte Carlo Code (몬테카를로 코드를 이용한 고에너지 전자가속기의 중성자 skyshine 평가방법 개발)

  • Oh, Joo-Hee;Jung, Nam-Suk;Lee, Hee-Seock;Ko, Seung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • The skyshine effect is an essential and important phenomenon in the shielding design of the high energy accelerator. In this study, a new estimation method of neutron skyshine was proposed and was verified by comparison with existing methods. The effective dose of secondary neutrons and photons at the locations that was far away from high-energy electron accelerator was calculated using FLUKA and PHITS Monte Carlo code. The transport paths of secondary radiations to reach a long distance were classified as skyshine, direct, groundshine and multiple-shine. The contribution of each classified component to the total effective dose was evaluated. The neutrons produced from the thick copper target irradiated by 10 GeV electron beam was applied as a source term of this transport. In order to evaluate a groundshine effect, the composition of soil on the PAL-XFEL site was considered. At a relatively short distance less than 50 m from the accelerator tunnel, the direct and groundshine components mostly contributed to the total effective dose. The skyshine component was important at a long distance. The evaluated dose of neutron skyshine agreed better with the results using Rindi's formula, which was based on the experimental results at high energy electron accelerator. That also agreed with the estimated dose using the simple evaluation code, SHINE3, within about 20%. The total effective dose, including all components, was 10 times larger than the estimated doses using other methods for this comparison. The influence of multiple-shine path in this evaluation of the estimation method was investigated to be bigger than one of pure skyshine path.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Comparative Evaluation of Radioactive Isotope in Concrete by Heavy Ion Particle using Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 중하전입자의 콘크리트 방사화 비교평가)

  • Bae, Sang-Il;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.359-365
    • /
    • 2021
  • A heavy particle accelerator is a device that accelerates particles using high energy and is used in various fields such as medical and industrial fields as well as research. However, secondary neutrons and particle fragments are generated by the high-energy particle beam, and among them, the neutrons do not have an electric charge and directly interact with the nucleus to cause radiation of the material. Quantitative evaluation of the radioactive material produced in this way is necessary, but there are many difficulties in actual measurement during or after operation. Therefore, this study compared and evaluated the generated radioactive material in the concrete shield for protons and carbon ions of specific energy by using the simulation code FLUKA. For the evaluation of each energy of proton beam and carbon ion, the reliability of the source term was secured within 2% of the relative error with the data of the NASA Space Radiation Laboratory(NSRL), which is an internationally standardized data. In the evaluation, carbon ions exhibited higher neutron flux than protons. Afterwards, in the evaluation of radioactive materials under actual operating conditions for disposal, a large amount of short-lived beta-decay nuclides occurred immediately after the operation was terminated, and in the case of protons with a high beam speed, more radioactive products were generated than carbon ions. At this time, radionuclides of 44Sc, 3H and 22Na were observed at a high rate. In addition, as the cooling time elapsed, the ratio of long-lived nuclides increased. For nonparticulate radionuclides, 3H, 22Na, and for particulate radionuclides, 44Ti, 55Fe, 60Co, 152Eu, and 154Eu nuclides showed a high ratio. In this study, it is judged that it is possible to use the particle accelerator as basic data for facility maintenance, repair and dismantling through the prediction of radioactive materials in concrete according to the cooling time after operation and termination of operation.

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.