• Title/Summary/Keyword: Neutral Current

Search Result 485, Processing Time 0.025 seconds

An Observational Study of Office Workers' Postural Behaviors During Computer Work (사무직 근로자의 컴퓨터 작업 자세의 관찰 연구)

  • Jun, Deok-Hoon;Goo, Mi-Ran
    • PNF and Movement
    • /
    • v.19 no.2
    • /
    • pp.243-250
    • /
    • 2021
  • Purpose: The purpose of this study was to observe office workers' postural behaviors during computer work to identify the risk factors for head and thorax postural behaviors. Methods: The participants included 57 office workers who worked longer than 20 hours on a computer. Postural behaviors during computer work were measured using 3-D wearable motion sensors on the forehead and sternum. A multivariate linear regression model evaluated the association between various risk factors (neck pain, demographics, and environmental factors) and non-head and thorax postural behaviors. Results: The participants maintained their head and thorax in neutral postures (defined as 10° extension~10° flexion and 5° extension~10° flexion, respectively) for 24.7% and 39.3% of the total recorded time. Those who reported neck pain at the measurement of postural behaviors showed less time spent in thorax postures. Current neck pain, high desk height, and the distance between the keyboard and the edge of the desk (cm) were found to be related to less time spent in a neutral thorax posture. Conclusion: Office environment factors and current neck pain might affect workers' thorax postures, which might also determine the orientation of head postures during computer work.

Human Hazard by Outdoor Electrical Facilities in Submerged Area (옥외 전기시설물 침수시 누설전류에 의한 인체영향)

  • 하태현;이현구;배정효;김대경
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.602-607
    • /
    • 2003
  • We show three-dimensional distribution of voltages resulted from the leakage current originated from outdoor electrical facilities in a submerged area. In case these facilities are grounded by the neutral line multiple grounding method, the existence of ungrounded electrical facilities can cause a disastrous effect on near-by passengers. In order to investigate this situation, we installed a real-scale test field for the experiment type I (for the leakage current path between a enclosure grounded electrical facility and another enclosure grounded one), and that for the experiment type II (for the leakage current path between a enclosure grounded electrical facility and another ungrounded one). For both cases, we carried out three-dimensional monitoring of the voltage distribution while varying additional conditions such as the exposure of the underground cables and the finishing of cable connection part. The result shows that a disastrous effect on human safety can arise from the leakage current without a pertinent measure for the construction and maintenance of outdoor electrical facilities.

A design for a robust active power filter in unbalanced and distortion source voltages in three-phase four-wire systems (전원전압의 불평형 및 왜곡에 강인한 3상 4선식 전력용 능동 필터의 설계)

  • Min J.K.;Choi J.H.;Kim H.S.;Kim K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.729-733
    • /
    • 2003
  • This paper proposed a novel current control strategy on active power filters using p-q-r instantaneous power theory which can compensate the line current harmonics and the neutral line current in unbalanced and/or distorted source conditions in three-phase four-wire systems. The proposed current control method is based on a sinusoidal PWM for fully-digital implementation which was compared with a hysteresis PWM. Simulation results showed good performance of the proposed current control strategy on shunt type APFs.

  • PDF

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

Simulation for fault current of wind turbine generating system following transformer winding connection (변압기결선에 따른 풍력발전시스템의 고장전류에 대한 시뮬레이션)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.454-457
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by MARTLB & SIMULINK. The simulation shall be performed by assuming single line to ground fault generated in the system Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

Development of Optical Signal Transmission for the KSTAR Project Pertaining to Instrumentation and Control of the Neutral Beam Test Stand at KAERI

  • Jung, Ki-Sok;Oh, Byung-Hoon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.289-295
    • /
    • 2005
  • Instrumentation and Control (I&C) of the Neutral Beam Test Stand (NB- TS) Facility at the Korea Atomic Energy Research Institute (KAERI) for the Korea Superconducting Tokamak Advanced Research (KSTAR) project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. Optical signal transmission constitutes a significant portion of I&C works and has been performed for the entirety of the project. During the NB- TS construction and related experiments, significant achievements to a more accurate as well as more refined optical signal transmissions have been made. Examples of those I&C works that utilized the optical signal transmission are the Langmuir probe signal transmission, gradient grid current signal transmission, gas flow control and signal transmission, ion source temperature measurement, beam line component temperature monitoring, and coolant flow signal transmission, etc. These optical signal transition provisions are now performing part of the indispensable functions for the proper operation of the NB- TS facility. Attained experience and expertise are expected to be well applied to the upcoming main neutral beam injection (NBI) system construction for the KSTAR project.

A Multi-megawatt Long Pulse Ion Source of Neutral Beam Injector for the KSTAR

  • Chang, Doo-Hee;Seo, Chang-Seog;Jeong, Seung-Ho;Oh, Byung-Hoon;Lee, Kwang-Won;Kim, Jin-Choon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.719-720
    • /
    • 2004
  • A multi-megawatt long pulse ion source (LPIS) of neutral beam injector was developed for the KSTAR. Beam extraction experiments of the LPIS were carried out at the neutral beam test stand (NBTS). Design requirements for the ion source were 120 kV/65 A deuterium beam and a 300 s pulse length. A maximum ion density of $9.1310^{11}$ $cm^{-3}$ was measured by using electric probes, and an optimum arc efficiency of 0.46 A/kW was estimated with ion saturation current of the probes, arc power, and total beam area. An arcing problem, caused by the structural defect of decelerating grid supporter, in the third gap was solved by the blocking of backstream ion particles, originated from the plasma in the neutralizer duct, through the unnecessary spaces on the side of grid supporter. A maximum drain power of 1.5 MW (i.e. 70 kV/21 A) with hydrogen was measured for a pulse duration of 0.5 s. Optimum beam perveance was ranged from 0.75 to 0.85. An improved design of accelerator for the effective control of beam particle trajectory should provide higher beam perveance.

  • PDF

A Study on Strategies of Smart Green City - The Priority Analysis and Application of Planning Technique -

  • Lee, Seo-Jeong;Oh, Deog-Seong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.5-17
    • /
    • 2015
  • Purpose: The goal of this research is to identify the planning techniques of Smart Green City with Ubiquitous method and carbon-neutral city planning techniques and to induce the main planning techniques through the analysis of relative importance and practical adaptation. Method: First of all, eighteen planning techniques were derived and categorized into three organization systems and six sectors through literature review and FGI analysis considering the applicability of Ubiquitous service for carbon-neutral city planning techniques. Secondly, based on expert surveys and AHP analysis, the importance of Smart Green City planning techniques was evaluated. Thirdly, using case study, six cases related to Smart Green City were analyzed for the current status of application of planning techniques. Lastly, considering the importance of planning techniques and practical aspects, the characteristics of Smart Green City and its implication were estimated. Result: Energy, Resource and Waste and Transportation sector were identified as important sectors for Smart Green City. In addition, 'Construction of Smart Grid', 'System for Utilization of New & Renewable Energy', 'Smart Resource Circulation Management System', 'Establishment of Public Transportation Information System basis', 'Construction of Pedestrian / Bicycle oriented Road Environment' are essential planning techniques to create Smart Green City.

A Control Scheme for Quality Improvement of Input-Output Current of Small DC-Link Capacitor Based Three-Level NPC Inverters (소용량 직류단 커패시터를 가지는 3-레벨 NPC 인버터의 입-출력 전류 품질 향상을 위한 제어 기법)

  • In, Hyo-Chul;Kim, Seok-Min;Park, Seong-Soo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.369-372
    • /
    • 2017
  • This paper presents a control scheme for three-level NPC inverters using small DC-link capacitors. To reduce the inverter system volume, the film capacitor with small capacitance is a promising candidate for the DC-link. When small capacitors are applied in a three level inverter, however, the AC ripple component increases in the DC-link NPV (neutral point voltage). In addition, the three-phase input grid currents are distorted when the DC-link capacitors are fed by diode rectifier. In this paper, the additional circuit is applied to compensate for small capacitor systems defect, and the offset voltage injection method is presented for the stabilization in NPV. These two proposed processes evidently ensure the quality improvement of the input grid currents and output load currents. The feasibility of the proposed method is verified by experimental results.

TWO DIMENSIONAL SIMULATION OF BEAM INJECTION INTO NEUTRAL PLASMA (Beam 전자와 중성 Plasma 사이의 상호작용에 관한 2차원적 수치계산)

  • 선종호;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.113-123
    • /
    • 1990
  • Two dimensional electrostatic model was used to investigate the interactions between beam electron and neutral plasma. It was found that results heavily depend on the beam density. When the beam electron density is lower than the ambient plasma beam density, many beam electrons exhibit vortex structure through beam-plasma interactions and can propagate into the ambient plasma easily from the injection area. On the other hand, when the beam density larget than that of the neutral ambient plasma, it was found that most of the beam electrons constitute return current and ion with much larger mass than that of the electron can be accelerated according to the magnetic field strength. Furthermore, as external field strength varies, it was found that propagation and interaction of the beam can show large dependence on it.

  • PDF