• Title/Summary/Keyword: Neutral Current

Search Result 485, Processing Time 0.027 seconds

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

Microprocessor-based and Modified Hysteresis Current Controller Design for BLDCM Drive

  • Lee, Sang-Wook;Ki, Gwang-Heon;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.25-28
    • /
    • 1989
  • This paper is to study a modified hysteresis band current control technique for keeping the fixed switching frequency. The control technique is applied to an brushless DC motor(BLDCM). This paper gives an analysis of the modified hysteresis band with isolated neutral case and the PI controller with current limiter in forward loop; their characteristics are studied by simulation. The proposed control technique is implemented by using a microprocessor-based system.

  • PDF

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

A Study on Fault Location Estimation Technique Using the distribution Ratio of Catenary Current in AC Feeding System (전차선 전류 분류비를 이용한 교류전기철도 고장점 표정기법에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Min, Myung-Hwan;Shin, Myong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.404-410
    • /
    • 2011
  • In AC feeding system, the fault location is calculated by using ratio of current absorbed in the neutral point of AT(Automatic Transformer) or by measuring reactance. In this way, however, an estimation error can be happened due to the many reasons. In addition, for measuring currents in the neutral point of AT, other measuring devices and communication equipments are additionally required. In order to solve the disadvantages, this paper suggests a novel technique using the distribution ratio of catenary current. The proposed technique uses existing protective relays and measures catenary current. With the measured data, we can calculate the distribution ratio of catenary current and determine fault location. Through the simulated results, we derived the correlation between current ratio and fault location. Using this technique, additional equipments and expenses can be reduced. Besides, fault location can be determined more correctly.

Analytical Modeling for Dark and Photo Current Characteristics of Short Channel GaAs MESFETs (단채널 GaAs MESFET의 DC특성 및 광전류 특성의 해석적 모델에 대한 연구)

  • 김정문;서정하
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.15-30
    • /
    • 2004
  • In this paper, an analytical modeling for the dark and photo-current characteristics of a buried-gate short- channel GaAs MESFET is presented. The presented model shows that the increase of drain current under illumination is largely due to not the increase of photo-conductivity in the neutral region but the narrowing effect of the depletion layer width. The carrier density profile within the neutral region is derived from solving the carrier continuity equation one-dimensionally. In deriving the photo-generated current, we assume that the photo-current is compensated with the thermionic emission current at the gate-channel interface. Moreover, the two-dimensional Poisson's equation is solved by taking into account the drain-induced longitudinal field effect. In conclusion, the proposed model seems to provide a reasonable explanation for the dark and photo current characteristics in a unified manner.

Oxidation and Neutral Electrolytic Pickling Behavior of 304 and 430 Stainless Steels (304 및 430 스테인레스 강판의 산화 및 중성염 전해산세 거동)

  • Kim T. S.;Park Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.285-293
    • /
    • 2004
  • Oxidation behavior of 304 and 430 stainless steel were studied using thin film X-ray analysis and glow discharge spectrum analysis (here-after GDS). The oxidation layer of 304 stainless steel was composed of $Cr_2O_3\;and\;FeCrO_4$ and its thickness was about $1.5{\mu}m$ after $1\~5$ minutes of annealing at $1120^{\circ}C$ open air. However, the oxidation layer of 430 stainless steels was mainly composed of $Cr_2O_3$ and its typical thickness was 0.5um after $1\~5$ minutes of annealing at $1000^{\circ}C$ open air. Electro-chemical analysis revealed that the descaling of oxidation layer could be activated by Fe, Cr dissolution from the matrix behind the oxidation layer at the current density of $5\~10ASD$ and by Fe, Cr-oxide dissolution from the oxidation layer at the current density over than 10ASD. Electrolytic stripping of 430 and 304 revealed the intial incubation period of descaling by oxygen evolving at low current density range such as $5\~10ASD$. However the dissolution of oxide layer was occurred when applying the anodic current of $10\~20ASD$ on 430 and 304 stainless steels. It was suggested that the electrolytic pickling of high Cr bearing stainless steel such as 430 and 304 seemed to be the more effective in the high current density range such as $10\~20ASD$ than the low current density range such as $5\~10ASD$.

  • PDF

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.

A Study on the Fault Current of Distribution System according to Connection of Wind Turbine Generation Grid-Connected Transformer (풍력발전 계통연계 변압기의 결선에 따른 배전계통의 고장전류에 관한 연구)

  • An, Hae-Joon;Ro, Kyoung-Soo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.369-371
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF