• Title/Summary/Keyword: Neurotoxic

Search Result 184, Processing Time 0.023 seconds

Evaluation of Nigella sativa Seed Constituents for Their in vivo Toxicity in Mice

  • EI-Hadiyah, T.M.;Raza, M.;Mohammed, O.Y.;Abdallah, A.A.
    • Natural Product Sciences
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2003
  • This study was designed to investigate the effects of main constituents of Nigella sativa (NS) seed on the survival and CNS responses in experimental animals. The toxicological investigations were conducted for the determination of median lethal doses $(LD_{50})$ of NS seed constituents [i.e. aqueous extract (AE), fixed oil (FO), volatile oil (VO)] and main components of its VO [i.e. thymoquinone (TQ), ${\alpha}-pinene$ (AP) and p-cymene (PC)]. A part of this study includes evaluation NS constituents in the induction of minimal neurological deficit (MND) as a parameter for neurotoxicity using chimney test. In this study, the i.p. $LD_{50}$ values of AE, FO, VO, TQ (suspended In 0.5%CMC), TQ (dissolved in corn oil), AP and PC, were 3020, 3371, 1853, 616.6, 90.3, 1726 and 1523 mg/kg, respectively. All the NS constituents can be considered moderately toxic ($LD_{50}$ ranged from 616.6 to 3371 mg/kg), except the oily solution of TQ, which was very toxic ($LD_{50}$ was 90.3 mg/kg). It appeared that the toxicity of the whole VO is mainly due to its content of TQ and to some extent PC. All the NS constituents induced different degrees of MND at certain dose levels. The median neurotoxic (or sedating) doses $(TD_{50})$ of AE, FO, VO, TQ (suspended in CMC) and AP and PC, were 950, 1403, 306, 88.1, >173 and 368 mg/kg, respectively. TQ was the most potent component in inducing MND, whereas the FO and AE were the least. Neurotoxicity induced by the VO in the chimney test may refer basically to its contents of TQ and to some extent PC and AP.

Ameliorative Effect of Schisandra chinensis and Ribes fasciculatum Extracts on Hydrogen Peroxide-Induced Neuronal Cell Death in Neuroblastic PC12 Cells and the Scopolamine-Induced Cognitive Impairment in a Rat Model (오미자칠해목 추출물의 과산화수소로 유발된 PC12뇌세포 사멸과 스코폴라민으로 유발된 렛드 동물모델에 대한 개선 효과)

  • Park, Eun-kuk;Han, Kyung-Hoon;Heo, Jae-Hyeok;Kim, Nam-Ki;Bae, Mun-Hyoung;Seo, Young-Ha;Yong, Yoon-joong;Jeong, Seon-Yong;Choi, Chun-Whan
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.3
    • /
    • pp.347-355
    • /
    • 2020
  • Cognitive impairment is considered to be key research topics in the field of neurodegenerative diseases and in understanding of learning and memory. In the present study, we investigated neuroprotective effects of Schisandra chinensis (SC) and Ribes fasciculatum (RF) extracts in hydrogen peroxide-induced neuronal cell death in vitro and scopolamine-induced cognitive impairment in Sprague Dawley® (SD) rat in vivo. Apoptotic cell death in neuroblastic PC12 cell line was induced by hydrogen peroxide for 1 hour at 100 μM. However, mixture of SC and RF treatment prevented peroxide induced PC12 cell death with no neurotoxic effects. For in vivo experiment, the effect of SC and RF extracts on scopolamine-induced cognitive impairment in SD rat was evaluated by spontaneous alternation behavior in Y-Maze test. After 30 min scopolamine injection, the scopolamine-induced rats presented significantly decreased % spontaneous alteration and acetylcholine level, compared to non-induced group. However, treatment of SC+RF extracts rescued the reduced % spontaneous alteration with acetylcholine concentration from hippocampus in scopolamine-induced rats. These results suggested that mixture of SC and RF extract may be a potential natural therapeutic agent for the prevention of cognitive impairment.

NEUROTOXICITY OF TRIMETHYLTIN IN HIPPOCAMPUS: A HYPEREXCITATORY TOXICITY

  • Chang, Louis W.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.191-204
    • /
    • 1990
  • Trimethyltin (TMT) induced lesions in the rat hippocampal formation was reviewed. Adult rats were treated with a single dose of 6.0 mg TMT/kg b.w. and were sacrificed between 3-60 days following exposure. On the hippocampal formation, the granule cells of fascia dentata showed early changes which subsided considerably at a later time when the destruction of the pyramidal neurons of the Ammon's horn became increasingly pronounced with time, leading to severe destruction of the structure. It is interesting to note that there was an inverse relationship of pathological involvement between the f.d. granule cells and the Ammon's horn neurons; i.e., when there was a large sparing of the granule cells. there was an extensive damage to the Ammon's horn and vice versa. This inverse relationship was also true between the $CA_3$neurons and the $CA_{1,2}$neurons in the Ammon's horn. Progressive zinc loss, as demonstrated by Timm's method, on the Mossy fibers was also observed. Similar Mossy fiber zinc depletion has been demonstrated in electrical stimulatory excitation condition of the perforant path to the hippocampus. Depletion of corticosterone, an inhibitor to the hippocampal neurons, by means of adrenalectomy will exaggerate the TMT induced hippocampal lesion. Neonatal study revealed that a unique degenerative pattern of the Ammon's horn could be established in accordance with exposure to TMT at specific maturation periods of the fippocampal formation: increasing destruction of the Ammon's horn with increasing synaptogenesis between the f.d. granule cells and the Ammon's horn neurons. Thus it is apparent that the damage of the Ammon's horn, upon exposure to TMT, may depend on the integrity and functional state of the f.d. granule cells. A hyperexcitory scheme and mechanism as the toxicity basis of TMT in the hippocampal formation is proposed and discussed.

  • PDF

Testosterone-mediated Neuroprotection in NO Induced Cell Death of Motor Neuron Cells Expressing Wild Type or Mutant Cu/Zn Superoxide Dismutase (Cu/Zn Superoxide Dismutase 유전자 발현 운동신경세포주에서 NO 독성에 대한 Testosterone의 보호효과)

  • Kim, Nam Hee;Kim, Hyun Jung;Kim, Manho;Park, Kyung Seok;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.1
    • /
    • pp.63-70
    • /
    • 2006
  • Background: Testosterone is reported to have neuroprotective effect in various neurological diseases. Recently, the mechanism involved in nitric oxide (NO)-mediated motor neuron death is under extensive investigation. The Cu/Zn-superoxide dismutase (SOD1) mutations has been implicated in selective motor neuron death of amyotrophic lateral sclerosis (ALS) and it is said to play an important role in NO-mediated motor neuron death. However, neuroprotective effect of testosterone on motor neuron exposed to NO has rarely been studied. Methods: Motor neuron-neuroblastoma hybrid cells expressing wild-type or mutant (G93A or A4V) SOD gene were treated with $200{\mu}M$ S-nitrosoglutathione. After 24 hr, cell viability was measured by MTT assay. To see the neuroprotective effect of testosterone, pretreatment with 1 nM testosterone was done 1 hr before S-nitroglutathione treatment. To study the mechanism of protective effect, $20{\mu}M$ flutamide (androgen receptor antagonist) was also pretreated with testosterone 1 hr before S-nitroglutathione treatment. Results: S-nitrosoglutathione showed significant neurotoxic effect in all three cell lines. Percentage of cell death was somewhat different in each cell line. 1 nM testosterone showed neuroprotective effect in G93A and wild-type cell line. In A4V cell line, testosterone did not showed neuroprotective effect. The neuroprotective effect of testosterone was reversed by $20{\mu}M$ flutamide. Conclusions: These results indicate that testosterone induces neuroprotection in NO-mediated motor neuron death directly through the androgen receptor. This neuroprotective effect of testosterone varies according to the types of SOD1 gene mutation. These data suggest that testosterone may be of therapeutic value against ALS.

  • PDF

The venom of jellyfish, Chrysaora pacifica, induces neurotoxicity via activating Ca2+-mediated ROS signaling in HT-22 cells

  • Yang, Yoon-Sil;Kang, Young-Joon;Kim, Hye-Ji;Kim, Min-Soo;Jung, Sung-Cherl
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.347-353
    • /
    • 2019
  • Stings of jellyfish, which frequently occur in a warm season, cause severe pain, inflammation and sometimes irreversible results such as the death. Harmful venoms from jellyfish, therefore, have been studied for finding the therapeutic agents to relieve pain or to neutralize toxic components. However, it is still unclear if and how jellyfish venom reveal neuronal toxicity even though pain induction seems to result from the activation of nociceptors such as nerve endings. In this study, using HT-22 cell line, we investigated neurotoxic effects of the venom of Chrysaora pacifica (CpV) which appears in South-East ocean of Korea. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, CpV significantly reduced the viability of HT-22 cells in a dose-dependent manner. Additionally, in 2',7'-Dichlorofluorescin diacetate fluorescence test under the culture condition lacking dominant inflammatory factors, CpV remarkably increased the production of intracellular reactive oxygen species (ROS). Reduced responsive fluorescence to Rhodamine123 and increased expression of intracellular cytochrome c were also observed in HT-22 cells treated with CpV. These indicate that CpV-reduced viability of HT-22 cells may be due to the activation of apoptotic signalings mediated with oxidative stress and mitochondrial dysfunction. Furthermore, removing Ca2+ ion or adding N-acetyl-Lcystein remarkably blocked the CpV effect to reduce the viability of HT-22 cells. The findings in this study clearly demonstrate that CpV may activate Ca2+-mediated ROS signalings and mitochondrial dysfunction resulting in neuronal damage or death, and suggest that blocking Ca2+ pathway is a therapeutic approach to possibly block toxic effects of jellyfish venoms.

Investigation of the effect of Erythrosine B on a β-amyloid (1-40) peptide using molecular modeling method

  • Lee, Juho;Kwon, Inchan;Cho, Art E.;Jang, Seung Soon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.14-23
    • /
    • 2015
  • Alzheimer's disease is one of the most common types of degenerative dementia. As a considerable cause of Alzheimer's disease, neurotoxic plaques composed of 39 to 42 residue-long amyloid beta($A{\beta}$) fibrils have been found in the patient's brain in large quantity. A previous study found that erythrosine B (ER), a red color food dye approved by FDA, inhibits the formation of amyloid beta fibril structures. Here, in an attempt to elucidate the inhibition mechanism, we performed molecular dynamics simulations to demonstrate the conformational change of $A{\beta}40$ induced by 2 ERs in atomistic detail. During the simulation, the ERs bound to the surfaces of both N-terminus and C-terminus regions of $A{\beta}40$ rapidly. The observed stacking of the ERs and the aromatic side chains near the N-terminus region suggests a possible inhibition mechanism in which disturbing the inter-chain stacking of PHEs destabilizes beta-sheet enriched in amyloid beta fibrils. The bound ERs block water molecules and thereby help stabilizing alpha helical structure at the main chain of C-terminus and interrupt the formation of the salt-bridge ASP23-LYS28 at the same time. Our findings can help better understanding of the current and upcoming treatment studies for Alzheimer's disease by suggesting inhibition mechanism of ER on the conformational transition of $A{\beta}40$ at the molecular level.

  • PDF

Effects of Berberine on L-DOPA Therapy in 6-Hydroxydopamine-induced Rat Models of Parkinsonism (Berberine이 백서의 6-Hydroxydopamine-유도 파킨슨병 모델에서의 L-DOPA 요법에 미치는 영향)

  • Shin, Kun-Seong;Kwon, Ik-Hyun;Choi, Hyun-Sook;Lim, Sung-Cil;Hwang, Bang-Yeon;Lee, Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.510-515
    • /
    • 2011
  • Isoquinoline compounds including berberine enhance L-DOPA-induced cytotoxicity in PC12 cells. In this study, the effects of berberine on L-DOPA therapy in unilateral 6-hydroxydopamine (6-OHDA)-induced rat models of parkinsonism were investigated. Rats were prepared for the models of Parkinson's disease by 6-OHDA-lesioning for 14 days and then treated with L-DOPA (10 mg/kg) with or without berberine (5 and 30 mg/kg, i.p.) for 21 days. Treatment with berberine (5 and 30 mg/kg, i.p.) showed a dopaminergic cell loss in substantia nigra of 6-OHDA-lesioned rats treated with L-DOPA: 30 mg/kg berberine was more intensive neurotoxic. The levels of dopamine were also decreased by berberine (5 and 30 mg/ kg) in striatum-substantia nigra of 6-OHDA-lesioned rats treated with L-DOPA. These results suggest that berberine aggravates cell death of dopaminergic neurons in L-DOPA-treated 6-OHDA-lesioned rat models of Parkinson's disease. Therefore, the long-term L-DOPA therapeutic patients with isoquinoline compounds including berberine may need to be checked for the adverse symptoms.

Depurination of Nucleosides and Calf Thymus DNA Induced by 2-Bromopropane at the Physiological Condition

  • Sherchan, Jyoti;Choi, Ho-Young;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2309-2317
    • /
    • 2009
  • Depurination, the release of purine bases from nucleic acids by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Though cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a replacement for chloroflurocarbons and 1,1,1-trichloroethane as a cleaning solvent in electronics industry. However, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. Owing to the toxicity of 2-BP, there has been a tendency to use 1-BP as an alternative cleaning solvent to 2-BP. However, 1-BP has also been reported to be neurotoxic in rats. Though $N^7$-guanine adduct of 2-BP has been reported previously, massive depurination of the nucleosides and calf thymus DNA was observed in this study. We incubated the nucleosides (ddG, dG, guanosine, ddA, dA and adenosine) with excess amount 2-BP at the physiological condition (pH 7.4, $37\;{^{\circ}C}$), which were analyzed by HPLC and LC-MS/MS. In addition, the time and dose response relationship of depurination in nucleosides induced by 2-bromopropane at the physiological condition was investigated. Similarly, incubation of calf-thymus DNA with the excess amount 2-BP at the physiological condition was also performed. In addition, the time and dose response relationship of depurination in calf-thymus DNA induced by 2-BP at the physiological condition was investigated. Those results suggest that the toxic effect of 2-BP could be both from the depurination of nucleosides and DNA adduct formation.

Effect of Epimedium Koreanum Nakai on GO-Induced Neurotoxicity in Cultured Mouse Spinal Dorsal Root Ganglion Neurons (Glucose Oxidase에 의(依)하여 손상(損傷)된 배양척수감각신경절세포(培養脊髓感覺神經節細胞)에 대(對)한 음양곽(淫羊藿)의 효과(效果))

  • Park Seung-Taeck;Lee Ho-Sub;Yun Yong-Gap;Park Byung-Rim
    • Herbal Formula Science
    • /
    • v.7 no.1
    • /
    • pp.143-151
    • /
    • 1999
  • To evaluate the neurotoxic effect of oxygen radicals in cultured mouse spinal dorsal root ganglion(DRG) neurons, cytotoxicity was determined by MTT assay after cultured DRG neurons were grown in the media containing various concentrations of glucose oxidase(GO). In addition, neuroprotective effect of herb extract, Epimedium Koreanum Nakai was examined by MTT assay in cultured DRG neurons. Cell viability of cultured DRG neurons was remarkably decreased by GO in dose- and time-dependent manner, and Epimedium Koreanum Nakai protected remarkably GO-induced neurotoxicity in these cultures. From the above results, it is suggested that oxygen radicals is toxic in cultured mouse DRG neurons, and herb extracts such as Epimedium Koreanum Nakai are effective in prevention of the neurotoxicity induced by oxygen radicals in cultured mouse DRG neurons.

  • PDF

Association between Amalgam Tooth Fillings and Blood Mercury Levels in Children

  • SaKong, Joon;Choi, Youn-Hee;Chung, Sun-Young;Kwon, Ho-Jang;Karmaus, Wilfried;Merchant, Anwar T.;Ha, Mi-Na;Hong, Yun-Chul;Kang, Dong-Mug;Song, Keun-Bae
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.123-128
    • /
    • 2011
  • The notion that dental amalgam is a potential source of mercury exposure remains a controversial issue. However, there are few epidemiological analyses that have addressed whether this occurs in children. We aimed in our current study to identify the relationship between dental amalgam filling surfaces and the blood mercury levels in a cohort of 711 South Korean children aged between 8-9 years. Oral examinations were conducted to detect the number of amalgam filling surfaces on the teeth of these individuals. Blood samples were also taken from these children to assess the levels of mercury accumulation in the body. The amalgam filling surfaces were classified into four groups based on their number: 0 (n = 368), 1-5 (n = 219), 6-10 (n = 89), and 11+ (n = 35). The blood mercury levels in the children with more than 10 amalgam surfaces was 0.47 ${\mu}g$/L higher on average than those with no amalgam surfaces after adjusting for the frequency of fish or seafood consumption, age, and gender (P < 0.05). We found from our data that a higher number of dental amalgam fillings correlated with a higher blood mercury level in Korean children. Further studies are needed to investigate whether these elevated mercury levels exert neurotoxic or nephrotoxic effects.