• Title/Summary/Keyword: Neuropathic

Search Result 454, Processing Time 0.03 seconds

Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?

  • Lee, Jae-Hee;Back, Seung-Keun;Lim, Eun-Jeong;Cho, Gyu-Chong;Kim, Myung-Ah;Kim, Hee-Jin;Lee, Min-Hee;Na, Heung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.59-69
    • /
    • 2010
  • Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists ($1{\mu}g$ bicuculline/rat and $5{\mu}g$ phaclofen/rat), agonists ($1{\mu}g$ muscimol/rat and $0.5{\mu}g$ baclofen/rat) or GABA transporter (GAT) inhibitors ($20{\mu}g$ NNC-711/rat and $1{\mu}g$ SNAP-5114/rat) into naive or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABAA and GABAB) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naive animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

  • Lee, Min Ju;Yoon, Tae Gyoon;Kang, Moonkyu;Kim, Hyun Jeong;Kang, Kyung Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.

Antinociceptive Effects of Tramadol on the Neuropathic Pain in Rats (쥐의 신경병증성 통증 모델에서 트라마돌의 진통효과)

  • Song, Kyung-Wha;Kim, Hyun-Jeong;Yum, Kwang-Won
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.150-155
    • /
    • 2001
  • Background: Tramadol is known to be a weak opioid. However, it has also been shown that tramadol is an effective norepinephrine and serotonin uptake blocker, which may be effective in the treatment of neuropathic pain. The present study was undertaken in order to assess the antinociceptive action of tramadol and to investigate possible antinociceptive mechanisms by using antagonists in an animal neuropathic pain models in rats. Methods: Rats were prepared with tight ligation at the left 5 and 6th lumbar spinal nerves (Kim and Chung's neuropathic pain model). The antinociceptive effects of tramadol (10, 20, and 50 mg/kg i.p.) in rats with neuropathic pain were assessed. Additionally, following coadministration of antagonists such as naloxone (1 mg/kg i.p.), yohimbine (1 mg/kg i.p.) and ritanserin (1 mg/kg i.p.) with 50 mg/kg of tramadol, the responses to mechanical and thermal stimuli were measured over a two-hour period. Results: Tramadol displayed potent antinociceptive effects in a dose-dependent manner on rats with neuropathic pain (P < 0.05). The effects of tramadol were inhibited by coadministered naloxone and yohimbine in rats with mechanical and thermal allodynia, respectively (P < 0.05). However, there were no significant changes in the pain behaviors in the case of ritanserin. Conclusions: Tramadol showed significant antinociceptive effects in rats with regards to neuropathic pain against both mechanical and thermal allodynia. The antinociceptive effect on the mechanical stimuli is medicated via an opioid receptor. However, it appears that the antinociceptive effects on thermal allodynia are mediated via a noradrenalin receptor vice a serotonergic receptor.

  • PDF

The Effect of Urinary Trypsin Inhibitor Against Neuropathic Pain in Rat Models

  • Jung, Ki Tae;Lee, Hyun Young;Yoon, Myung Ha;Lim, Kyung Joon
    • The Korean Journal of Pain
    • /
    • v.26 no.4
    • /
    • pp.356-360
    • /
    • 2013
  • Background: Nerve injury sometimes leads to chronic neuropathic pain associated with neuroinflammation in the nervous system. In the case of chronic neuropathic pain, the inflammatory and algesic mediators become predominant and result in pain hypersensitivity following nervous system damage. It is well known that urinary trypsin inhibitor (ulinastatin, UTI) has an anti-inflammatory activity. Recently, the neuroprotective action of UTI on the nervous system after ischemic injury has been reported. Thus, we evaluated the neuroprotective effect of ulinastatin in a rat model of neuropathic pain. Methods: Neuropathic pain was induced with L5 spinal nerve ligation (SNL) in male Sprague-Dawley rats weighing 100-120 g. The rats were divided into 3 groups, with n = 8 in each group. The rats in the control group (group 1) were administered normal saline and those in group 2 were administered UTI (50,000 U/kg) intravenously through the tail vein for 3 days from the day of SNL. Rats in group 3 were administered UTI (50,000 U/kg) intravenously from the $5^{th}$ day after SNL. The paw withdrawal threshold was measured using the von Frey test for 3 days starting from the $5^{th}$ day after SNL. Results: The paw withdrawal thresholds were significantly increased in the rats of group 2 compared to the other groups (P < 0.05). Conclusions: Ulinastatin, which was administered for 3 days after SNL, increased the paw withdrawal threshold and it could have a neuroprotective effect in the rat model of neuropathic pain.

Effect of Music Therapy as Intervention on Peripheral Neuropathic Pain and Anxiety of Gynecologic Cancer Patients Undergoing Paclitaxel Chemotherapy (음악치료가 Paclitaxel 항암화학요법을 받는 부인암 환자의 말초 신경병성 통증 및 불안에 미치는 효과)

  • Noh, Gie-Ok;Hwang, Moon-Sook;Cho, Keum-Sook;Lim, Joung-Ah;Kang, Mi-Kyung;Kim, Hyo-Jin;Kim, Ji-Youn
    • Women's Health Nursing
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2011
  • Purpose: This study was to investigate the effect of music therapy as intervention on peripheral neuropathic pain and anxiety of gynecologic cancer patients who were undergoing paclitaxel chemotherapy. Methods: Hospitalized 62 patients were assigned to an experimental group (n=30) and a control group (n=33) in this quasi-experimental study. The experimental group participated in music therapy that includes listening, singing and song writing during 1 hour. The peripheral neuropathic pain, anxiety and depression were examined as pre-intervention evaluation by using pain scale, anxiety scale (20 questions) and depression scale (20 questions) in both groups. There were no further treatments for the control group while the experimental group involved in music therapy. The peripheral neuropathic pain and anxiety were evaluated in both groups as post-intervention evaluation. Results: Outcomes were verified through hypothesis testing. The level of peripheral neuropathic pain and anxiety in the experimental group was decreased, compared to the control group. Conclusion: According to the study, music therapy is a beneficial intervention that reduces peripheral neuropathic pain and anxiety in gynecologic cancer patients. These findings are encouraging and suggest that music therapy can be applied as an effective intervention for minimizing chemotherapy related symptoms.

The Effect of Gabapentin for the Clinical Symptoms in the Traumatic Neuropathic Pain (외상성 신경병증성 통증의 각 임상증상에 대한 Gabapentin의 효과)

  • Kim, Yeung-Ki;Cho, Yun-Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.1
    • /
    • pp.82-90
    • /
    • 2004
  • Background: Gabapentin is widely used for the relief of neuropathic pain. But, there is no study of gabapentin in relation to traumatic neuropathic pain. The aim of this study is to assess the efficacy and effectiveness of gabapentin for the various clinical symptoms of traumatic neuropathic pain Materials and Methods: 50 patients with traumatic nerve injury were assigned to receive gabapentin, titrated to 900 mg/day over 9 days, followed by further increases to a maximum of 2400 mg/day. Continuous pain, paroxysmal pain, allodynia and thermal evoked pain were measured in mean daily pain scores, based on the 11-point Likert scale. The primary efficacy parameter was compared from the baseline to the final study week. Results: Over the 4.5 week study, this pain score decreased by 2.6 points in the continuous pain, 3.6 points in the paroxysmal pain, 3.1 points in the allodynia, and 2.5 points in the thermal evoked pain. The percentage of patients with over 50% improvement in pain scores was 33% in the continuous pain, 67% in the paroxysmal pain, 53% in the allodynia and 36% in the thermal evoked pain. There was no significant correlation between the effect of gabapentin and the time difference of the onset of symptoms and start of medication. Conclusions: This study shows that gabapentin reduced neuropathic pain in patients with traumatic peripheral nerve injury. Among the various characteristics of neuropathic pain, the reduction of paroxysmal pain and allodynia was greatest.

  • PDF

Effect of Gentianae Macrophyllae Radix Pharmacopuncture at Hwando (GB30) on Neuropathic Pain in Tibial and Sural Nerve Transected Rats (환도(環跳)(GB30) 진구약침(秦艽藥鍼)이 신경병리성 통증 유발 흰쥐에 미치는 영향)

  • Lee, Ook Jae;Kim, Seon Wook;Shin, Jeong Cheol
    • Journal of Acupuncture Research
    • /
    • v.33 no.3
    • /
    • pp.1-16
    • /
    • 2016
  • Objectives : The objective of this study was to investigate the effects of Gentianae Macrophyllae Radix pharmacopuncture (GP) at Hwando (GB30) in neuropathic pain induced rats. Methods : Neuropathic pain in rats was induced by tibial and sural nerve transection. The rat subjects were divided into 6 groups : normal (Nor, n = 5), control (Con, n = 5), neuropathic pain- induced injected at GB30 with 1 mg/kg GP (GP-A, n = 5), 5 mg/kg GP (GP-B, n = 5) and 20 mg/kg GP (GP-C, n = 5), and neuropathic pain-induced injected with 1mg/kg Tramadol (Tramadol, n=5). Injections were administered 2 times a week for a total of 5 treatments. After each treatment plantar withdrawal response was measured and after all 5 treatments were completed c-fos, Bax, Bcl-2, mGlu5 and leukocytes in the blood were analyzed. Results : 1. Groups GP-A, GP-B and GP-C showed a meaningful decrease in the withdrawal response of mechanical allodynia compared to the control group. 2. Groups GP-A, GP-B and GP-C showed a meaningful decrease in the expression of c-fos compared to the control group. 3. Groups GP-A and GP-C showed a meaningful increase in the expression of mGluR5 compared to the control group. 4. Groups GP-A, GP-B and GP-C showed a meaningful decrease in Bax/Bcl-2 ratio compared to the control group. Conclusion : These results suggest that Gentianae Macrophyllae Radix pharmacopuncture at Hwando (GB30) could decrease mechanical allodynia and could have analgesic and neuroprotective effects on the model of neuropathic pain.

Effects of Electroacupuncture on the Regulation of Chemokine Induced Spinal Activation of Microglia in the Rat Model of Neuropathic Pain (흰쥐 신경병증성 통증 모델에서 전침이 케모카인이 유도하는 척수 교세포 활성화 조절에 미치는 영향)

  • Sindhuri, Vishnumolakala;Lee, Ji Eun;Park, Hye-Ji;Kim, So-Hee;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.36 no.4
    • /
    • pp.264-273
    • /
    • 2019
  • Objectives : Microglia play a crucial role in electroacupuncture (EA) analgesia on neuropathic pain. The role of chemokines in producing analgesic effects of EA, however, is largely unknown. In the present study, we investigated the role of chemokines in producing analgesic effects of EA in the neuropathic pain model. Methods : Sprague-Dawley rats were randomly assigned into three groups (anesthetized group (ANE), non-acupoint EA group (NAP), and ST36 - GB34 EA group (ACU)). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw was tested. Western blot tests and immunofluorescence assay for C-C motif chemokine ligand 2 (CCL2) levels and microglia activation were performed on spinal cord L5/6. EA was treated once daily from the 3rd day after surgery for 5 days. Results : EA treatments applied to ST36 and GB34 significantly reduced both mechanical and thermal hypersensitivity after two and three times of treatment, respectively. While CCL2 expression significantly increased in neuropathic rats, it was significantly reduced in the ACU. In addition, co-localization of CCL2 and activated microglia significantly decreased in the ACU compared to those of ANE and NAP in the spinal cord L5/L6 dorsal horn. Conclusions : The present results suggest that EA applied to ST36 and GB34 modulates the reduction of CCL2 release from the injured neurons and consequently decreases microglia activation in the spinal cord. Regulation of chemokine induced spinal activation of microglia plays a key role in analgesic effects of EA in the rat model of neuropathic pain.

The Attenuation of Pain Behavior and Serum COX-2 Concentration by Curcumin in a Rat Model of Neuropathic Pain

  • Zanjani, Taraneh Moini;Ameli, Haleh;Labibi, Farzaneh;Sedaghat, Katayoun;Sabetkasaei, Masoumeh
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • Background: Neuropathic pain is generally defined as a chronic pain state resulting from peripheral and/or central nerve injury. There is a lack of effective treatment for neuropathic pain, which may possibly be related to poor understanding of pathological mechanisms at the molecular level. Curcumin, a therapeutic herbal extract, has shown to be effectively capable of reducing chronic pain induced by peripheral administration of inflammatory agents such as formalin. In this study, we aimed to show the effect of curcumin on pain behavior and serum COX-2 level in a Chronic Constriction Injury (CCI) model of neuropathic pain. Methods: Wistar male rats (150-200 g, n = 8) were divided into three groups: CCI vehicle-treated, sham-operated, and CCI drug-treated group. Curcumin (12.5, 25, 50 mg/kg, IP) was injected 24 h before surgery and continued daily for 7 days post-surgery. Behavioral tests were performed once before and following the days 1, 3, 5, 7 after surgery. The serum COX-2 level was measured on day 7 after the surgery. Results: Curcumin (50 mg/kg) decreased mechanical and cold allodynia (P < 0.001) and produced a decline in serum COX-2 level (P < 0.001). Conclusions: A considerable decline in pain behavior and serum COX-2 levels was seen in rat following administration of curcumin in CCI model of neuropathic pain. High concentration of Curcumin was able to reduce the chronic neuropathic pain induced by CCI model and the serum level of COX-2.