• 제목/요약/키워드: Neuronal development

검색결과 278건 처리시간 0.028초

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Ganglioside GT1b Mediates Neuronal Differentiation of Mouse Embryonic Stem Cells

  • Lee, So-Dam;Jin, Jung-Woo;Choi, Jin;Choo, Young-Kug
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.155-161
    • /
    • 2009
  • It has been reported that ganglioside GT1b is expressed during neuronal cell differentiation from undifferentiated mouse embryonic stem cells (mESCs), which suggests that ganglioside GT1b has a direct effect on neuronal cell differentiation. Therefore, this study was conducted to evaluate the effect of exogenous addition of ganglioside GT1b to an in vitro model of neuronal cell differentiation from undifferentiated mESCs. The results revealed that a significant increase in the expression of ganglioside GT1b occurred during neuronal differentiation of undifferentiated mESCs. Next, we evaluated the effect of retinoic acid (RA) on GT1b-treated undifferentiated mESCs, which was found to lead to increased neuronal differentiation. Taken together, the results of this study suggest that ganglioside GT1b plays a crucial role in neuronal differentiation of mESCs.

  • PDF

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

Molecular Mechanism of Dietary Restriction in Neuroprevention and Neurogenesis: Involvement of Neurotrophic Factors

  • Park, Hee-Ra;Park, Mi-Kyung;Kim, Hyung-Sik;Lee, Jae-Won
    • Toxicological Research
    • /
    • 제24권4호
    • /
    • pp.245-251
    • /
    • 2008
  • Dietary restriction (DR) is the most efficacious intervention for retarding the deleterious effects of aging. DR increases longevity, decreases the occurrence and severity of age-related diseases, and retards the physiological decline associated with aging. The beneficial effects of DR have been mostly studied in non-neuronal tissues. However, several studies have showed that DR attenuate neuronal loss after several different insults including exposure to kainate, ischemia, and MPTP. Moreover, administration of the non-metabolizable glucose analog 2-deoxy-D-glucose (2DG) could mimic the neuroprotective effect of DR in rodent, presumably by limiting glucose availability at the cellular level. Based on the studies of chemically induced DR, it has been proposed that the mechanism whereby DR and 2DG protect neurons is largely mediated by stress response proteins such as HSP70 and GRP78 which are increased in neurons of rats and mice fed a DR regimen. In addition, DR, as mild metabolic stress, could lead to the increased activity in neuronal circuits and thus induce expression of neurotrophic factors. Interestingly, such increased neuronal activities also enhance neurogenesis in the brains of adult rodents. In this review, we focus on what is known regarding molecular mechanisms of the protective role of DR in neurodegenerative diseases and aging process. Also, we propose that DR is a mild cellular stress that stimulates production of neurotrophic factors, which are major regulators of neuronal survival, as well as neurogenesis in adult brain.

SF508 Protects Ceramide-induced Neuronal Cell Death

  • Do Yeon Lee;Kwang Gill Lee;Joo-Hong Yeo;Hae Yong Kweon;Hee-Sun Chae;Yong Koo Kang;Wan Seok Joo;In Sook Lee;Sang Hyung Lee
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.109-111
    • /
    • 2003
  • In the present study, we examined ceramide-induced neuronal cell death and its mechanism and process using SK-N-KH cells, and investigated whether ROS was produced and related to other factors. In addition, we tried to check whether silk fibroin had protective effect fur neuronal cells, and through which cell death process this protective mechanism functioned. (omitted)

  • PDF

신경세포 사멸과 미세아교세포활성화 억제 동시 가능 천연물질 탐색 연구 (A Screen for Dual-protection Molecules from a Natural Product Library against Neuronal Cell Death and Microglial Cell Activation)

  • 민주식;이동석
    • 생명과학회지
    • /
    • 제25권6호
    • /
    • pp.656-662
    • /
    • 2015
  • 천연물을 기반으로 한 신약 개발은 일반적으로 오랜 기간 동안의 원료 약물로써 사용해 온 경험에 의한 다양한 임상적 결과의 축적과 이로 인한 안정성(stability)과 안전성(safety)의 확보 및 신약 개발 시간의 단축과 같은 이점을 가지고 있어, 천연물 유래 약물 연구는 꼭 필요한 실정이다. 다양한 신경질환에서 신경세포의 사멸과 미세아교세포의 과도한 활성화 즉 뇌염증이 관찰되며 이를 억제할 수 있는 물질에 대한 연구는 활발히 진행 중이지만, 현재까지 신경세포 사멸과 뇌염증을 동시에 억제하는 물질 개발 시도는 거의 없었다. 따라서, 본 연구에서는 천연물에서 추출한 물질로 총 240개로 구성된 라이브러리로부터 신경전달물질 중의 하나인 glutamate 과잉처리에 의한 산화적 스트레스 유도 신경세포(HT22) 사멸과 LPS에 의한 미세아교세포(BV2)의 과도한 활성화 즉 뇌염증의 표지 인자 중 하나인 NO의 생산량의 감소 효과가 동시에 나타나는 물질을 검출한 결과, 대황에서 추출한 Chrysophanol이 검출되었으며 더욱이 Chrysophanol이 신경세포와 미세아교세포 모두에서 glutamate와 LPS에 의해 각각 유도된 세포내 활성산소(ROS) 발생을 억제하는 것을 확인하였다. 앞으로 Chrysophanol에 대한 보다 깊은 연구를 통하여 산화적 스트레스에 의한 신경세포 사멸과 미세아교세포의 과잉 활성화에 따른 뇌염증의 발생을 동시에 억제하는 신경질환의 치료 및 예방 신약개발 후보 물질 가능성을 제시 하고자 한다.

Proline Metabolism in Neurological and Psychiatric Disorders

  • Yao, Yuxiao;Han, Weiping
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.781-788
    • /
    • 2022
  • Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.

Dopaminergic neuronal development in the embryonic mesencephalon of mouse

  • Kim, Mun-Ki;Lee, Si-Joon;Won, Chung-Kil
    • 대한수의학회지
    • /
    • 제60권4호
    • /
    • pp.203-207
    • /
    • 2020
  • This study presents neuronal migration pattern of dopamine (DA) neurons generated in separate regions occupying the ventral mesencephalic territory. A single pulse 5-bromodeoxyuridine (BrdU) was administered at embryonic day (E)10-E15. Distribution of tyrosine hydroxylase (TH) positive cells was determined at E13-postnatal day 0 (P0) by immunohistochemistry. BrdU positive cells labeled at E10 were spread out uniformly in the mesencephalon from E13 to E15, migrating through dorsal and ventral routes at E17 and P0. TH expression labeled at E10 was observed at E13 in the ventromedial region and clearly formed in the ventral tegmental area (VTA) at E15. At E17, TH expression in the substantia nigra (SN) was observed in the ventrolateral region, spreading more outward of the mesencephalon at P0. Generation of TH-positive cells labeled at E13 was also observed in VTA and SN of the mesencephalon at E17 and P0. The expression of these cells labeled after E15 was markedly decreased. These results demonstrated that an almost complete primary structure of DA neuron was formed at the early embryonic stage in the ventral mesencephalon, showing the most active neuronal migration was occurred at E13-E17.

Swimming During Pregnancy Increases the Expression c-Fos and c-Jun in the Hippocampus of Rat Offspring

  • Sim, Young-Je;Kim, Jee-Youn;Kim, Chang-Ju
    • 운동영양학회지
    • /
    • 제13권1호
    • /
    • pp.23-28
    • /
    • 2009
  • The expression of c-Fos and c-Jun represents neuronal activity and plays a crucial role in the shaping of the development of brain. During the late pregnancy, exercise is known to influence neuronal activity of offspring. In the present study, the effect of swimming during pregnancy on the expression of c-Fos and c-Jun in the CA1, CA2, CA3 regions, and the dentate gyrus of the hippocampus of rat offspring was investigated using immunohistochemistry. Pregnant rats in the swimming group were forced to swim for 10 min once a day from 15 days after pregnancy until delivery. The expression of c-Fos and c-Jun in the CA1, CA2, CA3 regions, and the dentate gyrus of the hippocampus of pups was significantly increased by maternal swimming during late pregnant period. The present results show that prenatal swimming may enhance the neuronal activity of pups and affect the neonatal brain development.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • 제12권2호
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.