• Title/Summary/Keyword: Neuronal Cultures

Search Result 76, Processing Time 0.022 seconds

Myelination by co-culture of neurons and schwann cells and demyelination by virus infection (뉴런세포와 슈반세포의 공동배양에 의한 수초화와 바이러스 감염에 의한 탈수초화)

  • Sa, Young-Hee;Kweon, Tae Dong;Kim, Ji-Young;Kim, Hyun Joo;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.448-451
    • /
    • 2018
  • The purpose of this study was to investigate the developmental process of myelination by neuron and Schwann cell cultures and the development of demyelination by herpes simplex virus-1 infection by electron microscopy and molecular biological analysis. The dorsal root ganglion (DRG) was isolated from the mouse embryo and Schwann cells and neuronal cells were cultured in vitro. Neuronal cells treated with mitotic inhibitors and purified Schwann cells were co-cultured together to induce myelination. The herpes simplex virus-1 was infected with the co-cultured cells, and the demyelination was induced. The myelin protein zero (MPZ) antibody, which means the presence of myelin formation, was used and electron microscopy was used to observe the development of myelin and dehydration.

  • PDF

Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats (신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가)

  • Cho, Dae-Hyun;Kim, Jun-Gyon;Jeong, Yong;Lee, Bong-Hun;Kim, Eun-Youb;Kim, Jeong-Goo;Cho, Tai-Soon;Kim, Jin-Suk;Moon, Hwa-Hwey
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

Protective Effect of MeOH Extract of Evodia officinalis on Cyanide-induced Neurotoxicity in Cultured Neuroblastoma Cells (오수유 MeOH 추출물이 Cyanide에 의한 신경세포의 보호효과에 미치는 영향)

  • Kim, Sang-Tae;Ahn, Soung-Hee;Kim, Jeong-Do;Kim, Young-Kyoon
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.4 s.135
    • /
    • pp.282-287
    • /
    • 2003
  • We reported that neurotoxicity may contribute to cyanide-induced neuronal injury. Cyanide stimulates the release of glutamate which can activate glutamate receptors to propagate excitotoxic processes. We examined the role of plant extracts in mediating the cyanide-induced cytotoxicity and report here that the cytotoxicity assessed in SK- N-SH cell cultures by measuring lactate dehydrogenase (LDH) in the culture media was significantly blocked by Evodia officinalis MeOH extract (OMU). Also, when OMU was treated in NaCN level cultures, the neurite outgrowth was regenerated as much as in the treatment of NaCN only. These results indicate that OMU treatment were not only protected the neurons against NaCN-induced damage but also regenerated the neurite outgrowth of neuroblastoma cells.

Betaine Attenuates Glutamate-induced Neurotoxicity in Primary Cultured Brain Cells

  • Park, Mi-Jung;Kim, So-Ra;Huh, Hoon;Jung, Jee-Hyung;Kim, Young-Choong
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.343-347
    • /
    • 1994
  • Effects of betaine on glutamate-induced neurotoxicity were examined on primary culturs of chicken embryonic brain cells and on rat cortical cultures. Betaine was found to attenuate glutamate-induced neurotoxicity both morphologically and biochemically. A 30 min exposure of chicken embryonic brain cells cultured for 12 days to 500 .mu.M glutamate produced wide-spread acute neuronal swelling and neurtic fragmentation. A 2-h pretreatment of cultured chicken embryonic brain cells with i mM betaine prior to a 30 min exposure to 500 , mu, M glutamate significantly raised the survival rate of neurons in the culture. When chicken embryonic brain cells were pretreated for 2 h with i mM betaine followed by exposure to 100 .mu.M glutamate for 42 h, lactate dehydrogenase levels within the cells remained at 62% of .mu.M untreated control values while glutamate-treated control fell to 0% lactate dehydrogenase. Betaine also exerted attenuating effects on N-methyl-D-asparte-, kainate-and quisqualate-induced neurotoxicity in a similar manner to that observed with glutamate. Similar neuroprotective effects of betaine with rat cortical cultures.

  • PDF

Cell Death Study in Embryonic Stem Cell-derived Neurons and Its Applications (배아줄기세포 유래 신경계세포에서의 세포사멸 연구와 그 응용)

  • Lee, Chul-Sang
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Specific protocols to increase the differentiation of neuronal cells from embryonic stem (ES) cells have been well established, such as retinoic acid induction and lineage selection of neuronal cells. For the neuropathological studies, ES-derived neurons (ES neurons) must show normal physiological characteristics related to cell death and survival and should be maintained in vitro for a sufficient time to show insults-specific cell death without spontaneous death. When mouse ES cells were plated onto astrocytes monolayer after retinoic acid induction, most ES cells differentiated into neuronal cells, which were confirmed by the presence of specific neuronal markers, and the cultures were viable for at least four weeks. When these cultures were examined for vulnerability to glutamate excitotoxicity, ES neurons were vulnerable to excitotoxic insults mediated by agonist-specific receptors. The vulnerability to excitotoxic death increased with developmental age of ES neurons in vitro. Specific receptors for Neurotrophin and GDNF family ligands were present in ES neurons. GDNF and NT-3 could modulate the survival and excitotoxic vulnerability of ES neurons. The vulnerability and resistance to toxic insults, which are essential requirements of model culture systems for neuropathological studies, make ES neurons to a useful model culture system. Especially ES cell are highly amenable to genetic modification unlikely to primary neuronal cells, which will give us a chance to answer more complicated neurophysiological questions. Recently there was an outstanding attempt to explore the cellular toxicity using human ES cells (Schrattenholz & Klemm, 2007) and it suggested that ES cells could be a new model system for neurophysiological studies soon and go further a large-scale screening system for pharmacological compounds in the future.

  • PDF

Role of phospholipase D and osteopontin in reactive glial cells after transient forebrain ischemia

  • Kim, Seong-Yun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.15-16
    • /
    • 2000
  • Transient forebrain ischemia results in delayed neuronal death in the CA1 region of the hippocampus after injury, which is, at least in part, a consequence of excessive generation of reactive oxygen species. Previous in vitro studies using cell cultures or brain slices have demonstrated that phospholipase D (PLD) in the nervous system is involved in the signaling mechanism in response to a variety of agonists. Several recent studies have shown that reactive oxygen species stimulate phospholipase D (PLD) activity in several kinds of cells. Therefore, this raises the possibility that PLD activity is enhanced in the ischemic brain. Meanwhile, osteopontin (OPN) was initially identified as a sialoglycoprotein in bone, but has since been found in various tissues. Although not much is known about its function, OPN seems to play an important role in inflammation and tissue repair. Recently, it was reported that OPN was upregulated in the activated microglia after focal brain ischemia, suggesting that OPN might play a role in wound healing after a focal stroke.

  • PDF

Effects of Ginsenosides on the Glutamate Release and Intracellular Calcium Levels in Cultured Rat Cerabeller Neuronal Cells

  • Oh, Seikwan;Kim, Hack-Seang;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.295-300
    • /
    • 1995
  • These studies were designed to examine the effects of ginsenosides on glutamate neurotansmission. In primary cultures of rat cerebellar granule cells, ginsenosides (Rb1, Rc did not Rg1, $500\mug/ml$) increased glutamate release which was measured by HPLC. but HPLC, but Re did not shwo an elevation of glutamate release. However, all of these ginsenosides down-regulated N-methyl-D-aspartate (NMDA)-induced glutamate release. Rc strongly increased glutamate release and elevated intracellular clcium concentrations $([Ca_{2+}]_i)$ which was measured by ratio fluorometry with FURA-2AM. These results indicate that ginsenosides have a homeostatic effect on glutamate neurotransmission, and there is a structure-function relationship among the ginsenosides tested.

  • PDF

Forsythiae Fructus and Its Active Component, Arctigenin, Provide Neuroprotection by Inhibiting Neuroinflammation

  • Park, Ji-Ho;Hong, Ye-Ji;Moon, Eun-Jung;Kim, Seul-A;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.425-430
    • /
    • 2011
  • In this study, we found that Forsythiae fructus (FF) and one of its main compounds, arctigenin, significantly inhibited nitric oxide production in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Arctigenin also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2, and inhibited the activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38. Moreover, it also reduced levels of proinflammatory cytokines, interleukin $1{\beta}$, tumor necrosis factor ${\alpha}$ and prostaglandin E2, and inhibited neuronal death in LPS-treated organotypic hippocampal cultures. Therefore, we suggest that arctigenin may confer a neuroprotective effect via the inhibition of neuroinflammation.

Guidelines for Manufacturing and Application of Organoids: Brain

  • Taehwan Kwak;Si-Hyung Park;Siyoung Lee;Yujeong Shin;Ki-Jun Yoon;Seung-Woo Cho;Jong-Chan Park;Seung-Ho Yang;Heeyeong Cho;Heh-In Im;Sun-Ju Ahn;Woong Sun;Ji Hun Yang
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.158-181
    • /
    • 2024
  • This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.

Effect of growth hormone on neuronal death in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation (신생 흰쥐 해마 절편 배양에서 산소-포도당 박탈에 의한 신경 세포 사망에 대한 성장호르몬의 효과)

  • Hong, Kyung Sik;Gang, Jihui;Kim, Myeung Ju;Yu, Jeesuk;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.588-593
    • /
    • 2009
  • Purpose : To investigate whether growth hormone (GH) has a protective effect on neurons in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation (OGD). Methods : Cultured hippocampal slices of 7-day-old rats were exposed to OGD for 60 min. Then, the slices were immediately treated with three doses of GH (5, 50, or $500{\mu}M$) in media. The relative fluorescent densities of propidium iodide (PI) uptake in the slices and relative lactate dehydrogenase (LDH) activities in the media were determined and compared between each GH- treated group of slices and untreated slices (control) at 12 and 24 h after OGD. Immunofluorescent staining for caspase-3 and TUNEL staining were performed to observe the effect of GH on apoptotic neuronal death. Results : The relative fluorescent densities of PI uptake in CA1 and dentate gyrus (DG) of the hippocampal slices in each GH-treated group were not significantly different from those in the untreated slices at 12 and 24 h after OGD (P>0.05). Treatment with GH could reduce the relative LDH activities in the media of the GH-treated groups only at 12 h after OGD (P<0.05). Expression of caspase-3 and TUNEL positivity in CA1 and DG of the slices treated with 50-iM GH were not different from those of the untreated slices at 12 and 24 h after OGD. Conclusion : Treatment of hippocampal slice cultures with GH after OGD does not show a definitive protective effect on neuronal death but can reduce the LDH efflux of the slices in media at 12 h after OGD.