• Title/Summary/Keyword: Neurodegenerative disorder

Search Result 125, Processing Time 0.026 seconds

Leigh Syndrome Mimicking Wernicke's Encephalopathy: A Case Report (베르니케 뇌병증으로 오인된 리 증후군: 증례 보고)

  • Jisoo Oh;Jinok Choi;Soojung Kim;Eun-ae Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1478-1485
    • /
    • 2020
  • Leigh syndrome or subacute necrotizing encephalomyelopathy is a rare, rapidly progressive neurodegenerative disorder. In general, symptoms such as shortness of breath and decreased cardiac function usually occur within 1 year of life. It is a serious disease with a mortality rate of 75% in 2-3 years. The cause of Leigh syndrome is DNA mutation. Approximately 75% of patients have nuclear DNA mutations while 25% have mitochondrial DNA mutations. Clinical symptoms vary depending on the affected brain area. Neuroimaging plays an important role in diagnosing patients with Leigh syndrome. Late-onset Leigh syndrome is rarer and progresses more slowly compared to the classic form. Here, we report a case of late-onset Leigh's syndrome mimicking Wernicke's encephalopathy.

Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry

  • Yoon Young Cho;Jeong Hill Park;Jung Hee Lee;Sungkwon Chung
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydiphenyl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.

The Analysis of Mitochondrial DNA in the Patients with Essential Tremor and Parkinson's Disease (본태성 수전증과 파킨슨병 환자에서 미토콘드리아 DNA 비교 분석)

  • Kim, Rae Sang;Yoo, Chan Jong;Lee, Sang-Gu;Kim, Woo-Kyung;Han, Ki-Soo;Kim, Young-Bo;Park, Cheol-Wan;Lee, Uhn
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1415-1420
    • /
    • 2000
  • Essential tremor(ET) is the most common movement disorder however there has been little agreement in the neurologic literature regarding diagnostic criteria for ET. Familial ET is an autosomal dominant disorder presenting as an isolated postural tremor. The main feature of ET is postural tremor of the arms with later involvement of the head, voice, or legs. In previous studies, it was reported that ET susceptibility was inherited in an autosomal dominant inheritance. As with previous results, it would suggest that ET might be associated with defect of mitochondrial or nuclear DNA. Recent studies are focusing molecular genetic detection of movement disorders, such as essential tremor and restless legs syndrome. Parkinson's disease(PD) is a neurodegenerative disease involving mainly the loss of dopaminergic neurons in substantia nigra by several factors. The cause of dopaminergic cell death is unknown. Recently, it has been suggested that Parkinson's disease many result from mitochondrial dysfunction. The authors have analysed mitochondrial DNA(mtDNA) from the blood cell of PD and ET patients via long and accurate polymerase chain reaction(LA PCR). Blood samples were collected from 9 PD and 9 ET patients. Total DNA was extracted twice with phenol followed by chloroform : isoamylalcohol. For the analysis of mtDNA, LA PCR was performed by mitochondrial specific primers. With LA PCR, 1/3 16s rRNA~1/3 ATPase 6/8 and COI~3/4 ND5 regions were observed in different patterns. But, in the COI~1/3 ATPase 6/8 region, the data of PCR were observed in same pattern. This study supports the data that ET and PD are genentic disorders with deficiency of mitochondrial DNA multicomplexes.

  • PDF

Phosphodiesterase-5 Inhibitor Attenuates Anxious Phenotypes and Movement Disorder Induced by Mild Ischemic Stroke in Rats

  • Yu, Yeon Hee;Kim, Seong-Wook;Kang, Juhyeon;Song, Yejin;Im, yHyuna;Kim, Seo Jeong;Yoo, Dae Young;Lee, Man-Ryul;Park, Dae-Kyoon;Oh, Jae Sang;Kim, Duk-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.665-679
    • /
    • 2022
  • Objective : Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke. Methods : We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations. Results : Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke. Conclusion : PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.

Therapeutic Effect of Hydrocolloid Membrane Containing Liriope platyphylla Extracts on the Burn Wounds of SD Rats (맥문동 혼합 하이드로콜로이드막의 제조 및 화상치료 효능평가)

  • Lee, Eun Hae;Go, Jun;Kim, Ji Eun;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Park, Chan Kyu;Lee, Hyeon Ah;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • A variety of previous pharmacological studies have suggested Liriope platyphylla (L. platyphylla) may exert beneficial biological effects on inflammation, diabetes, neurodegenerative disorder, obesity, constipation, and atopic dermatitis. In addition, hydrocolloid membranes (HCMs) have attracted attention in dermatological care, including in the treatment of scleroderma skin ulcers, cutaneous ulcers, permanent tympanic membrane perforations, pressure sores, and decubitus ulcers in the elderly. To investigate the therapeutic effects of HCM containing an aqueous extract of L. platyphylla (HCM-LP) on second-degree burn wounds, their physico-chemical properties were analyzed and the therapeutic effects were observed in SD rats after treatment with HCM-LP for 14 days. Significant declines in tensile strength (38.4%) and absorptiveness (46.3%), as well as an increase in surface roughness (38.1%) were detected in HCM-LP compared with that of HCM. In SD rats with burned skin, the wound diameter was shorter in the HCM-LP treated group than in the GZ group on post-surgical day 14, while the significant improvements in scar tissue reduction, epithelium regeneration, angiogenesis, and extracellular matrix deposition were observed in the HCM-LP-treated group during all experimental periods. Overall, these results suggest HCM-LP may accelerate the process of healing the burn injury skin of SD rats through the regulation of angiogenesis and connective tissue formation.

Methionyl-tRNA-synthetase is a Novel Interacting Protein of LRRK2 (파킨스병 유전인자인 LRRK2와 상호작용하는 methionyl-tRNA synthetase)

  • Kim, Hyejung;Ho, Dong Hwan;Son, Ilhong;Seol, Wongi
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.170-175
    • /
    • 2018
  • Parkinson's disease (PD) is the most common movement disorder and the second most common neurodegenerative disease after Alzheimer's disease. Approximately 5~10% of PD patients are familial PD cases. Leucine-rich repeat kinase 2 (LRRK2) has been known to be a causal gene of PD when it is mutated. LRRK2 contains the functional kinase and GTPase domains as well as leucine-rich repeat (LRR) and WD40 domains that are known to play critical roles for protein-protein interaction, suggesting that LRRK2-interacting proteins are important regulators for PD pathogenesis. In an effort to identify proteins interacting with LRRK2, we carried out co-immunoprecipitation of LRRK2 antibody using extracts of NIH3T3 cells that express LRRK2 at a relatively high level. The mass spectrometry analysis of a precipitated band revealed that the co-precipitated band was methionyl-tRNA synthetase (MRS), an ancient enzyme that transfers methionin to its cognate tRNA. The interaction of MRS with LRRK2 was confirmed again by co-immunoprecipitation of endogenous proteins and GST pull-down assays. However, LRRK2 did not phosphorylate recombinant MRS protein in in vitro kinase assays, and over-expression of LRRK2 or MRS did not affect the stability of its partner protein. Our data indicate that LRRK2 interacts with but does not phosphorylate MRS, and the stability of each partner is not affected by the other.

Transduction of Familial Amyotrophic Lateral Sclerosis-related Mutant PEP-1-SOD Proteins into Neuronal Cells

  • An, Jae Jin;Lee, Yeom Pyo;Kim, So Young;Lee, Sun Hwa;Kim, Dae Won;Lee, Min Jung;Jeong, Min Seop;Jang, Sang Ho;Kang, Jung Hoon;Kwon, Hyeok Yil;Kang, Tae-Cheon;Won, Moo Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Lee, Kil Soo;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.

Spinosin, a C-Glucosylflavone, from Zizyphus jujuba var. spinosa Ameliorates Aβ1-42 Oligomer-Induced Memory Impairment in Mice

  • Ko, Sang Yoon;Lee, Hyung Eun;Park, Se Jin;Jeon, Se Jin;Kim, Boseong;Gao, Qingtao;Jang, Dae Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2015
  • Alzheimer's disease (AD) is a neurodegenerative disorder associated with progressive memory loss and neuronal cell death. Although numerous previous studies have been focused on disease progression or reverse pathological symptoms, therapeutic strategies for AD are limited. Alternatively, the identification of traditional herbal medicines or their active compounds has received much attention. The aims of the present study were to characterize the ameliorating effects of spinosin, a C-glucosylflavone isolated from Zizyphus jujuba var. spinosa, on memory impairment or the pathological changes induced through amyloid-${\beta}_{1-42}$ oligomer ($A{\beta}O$) in mice. Memory impairment was induced by intracerebroventricular injection of $A{\beta}O$ ($50{\mu}M$) and spinosin (5, 10, and 20 mg/kg) was administered for 7 days. In the behavioral tasks, the subchronic administration of spinosin (20 mg/kg, p.o.) significantly ameliorated $A{\beta}O$-induced cognitive impairment in the passive avoidance task or the Y-maze task. To identify the effects of spinosin on the pathological changes induced through $A{\beta}O$, immunohistochemistry and Western blot analyses were performed. Spinosin treatment also reduced the number of activated microglia and astrocytes observed after $A{\beta}O$ injection. In addition, spinosin rescued the $A{\beta}O$-induced decrease in choline acetyltransferase expression levels. These results suggest that spinosin ameliorated memory impairment induced through $A{\beta}O$, and these effects were regulated, in part, through neuroprotective activity via the anti-inflammatory effects of spinosin. Therefore, spinosin might be a useful agent against the amyloid ${\beta}$ protein-induced cognitive dysfunction observed in AD patients.

Transduced Tat-α-Synuclein Protects against Oxidative Stress In vitro and In vivo

  • Choi, Hee-Soon;Lee, Sun-Hwa;Kim, So-Young;An, Jae-Jin;Hwang, Seok-Il;Kim, Dae-Won;Yoo, Ki-Yeon;Won, Moo-Ho;Kang, Tae-Cheon;Kwon, Hyung-Joo;Kang, Jung-Hoon;Cho, Sung-Woo;Kwon, Oh-Shin;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.253-262
    • /
    • 2006
  • Parkinson's disease (PD) is a common neurodegenerative disorder and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although many studies showed that the aggregation of $\alpha$-synuclein might be involved in the pathogenesis of PD, its protective properties against oxidative stress remain to be elucidated. In this study, human wild type and mutant $\alpha$-synuclein genes were fused with a gene fragment encoding the nine amino acid trans activator of transcription (Tat) protein transduction domain of HIV-l in a bacterial expression vector to produce a genetic in-frame WT Tat-$\alpha$-synuclein (wild type) and mutant Tat-a-synucleins (mutants; A30P and A53T), respectively, and we investigated the protective effects of wild type and mutant Tat-$\alpha$-synucleins in vitro and in vivo. WT Tat-$\alpha$-synuclein rapidly transduced into an astrocyte cells and protected the cells against paraquat induced cell death. However, mutant Tat-$\alpha$-synucleins did not protect at all. In the mice models exposed to the herbicide paraquat, the WT Tat-$\alpha$-synuclein completely protected against dopaminergic neuronal cell death, whereas mutants failed in protecting against oxidative stress. We found that these protective effects were characterized by increasing the expression level of heat shock protein 70 (HSP70) in the neuronal cells and this expression level was dependent on the concentration of transduced WT Tat-$\alpha$-synuclein. These results suggest that transduced Tat-$\alpha$-synuclein might protect cell death from oxidative stress by increasing the expression level of HSP70 in vitro and in vivo and this may be of potential therapeutic benefit in the pathogenesis of PD.

Effects of Gastrodia elata Extracts on Scopolamine-induced Memory Impairment in Rats (천마 추출액이 Scopolamine으로 유발된 기억력 감퇴 흰쥐에 미치는 영향)

  • Kim, Jin-Ho;Choo, Han-Na;Park, Eun-Hye;Jeong, Jong-Kil;Kim, Kyeong-Ok;Kim, Jeong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.595-599
    • /
    • 2013
  • Alzheimer's disease is a progressive neurodegenerative disorder characterized by a gradual decline in memory associated with shrinkage of brain tissue, with a localized loss of neurons mainly in the hippocampus and basal forebrain. This study investigated the neuroprotective effect of Gastrodia elata aqueous extracts against scopolamine-induced neurotoxicity in the hippocampus of male Sprague-Dawley rats. The animals (n=25) were divided into five different groups with five animals per each group. The normal group (Nor) was administered with saline, while the control (Con) group was administered saline after scopolamine treatment. The experimental group (Exp) was administered Gastrodia elata aqueous extracts (200 mg/kg body weight) for 20 or 30 days after scopolamine treatment. From a light microscopy study, the nuclei of neurons in the hippocampus were more shrunken or condensed in the 20 or 30 day control groups compared to experimental groups. The densities of neurons from the CA1 and CA3 area of the hippocampus in the Exp increased compared with the Con. Amyloid ${\beta}$ protein, containing PAS-positive materials, was lower in the Exp compared with the Con. The present study demonstrates that Gastrodia elata aqueous extracts possess neuroprotective potential, thus validating its use in alleviating the toxic effects of scopolamine.