Transduction of Familial Amyotrophic Lateral Sclerosis-related Mutant PEP-1-SOD Proteins into Neuronal Cells

  • An, Jae Jin (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Yeom Pyo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, So Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Sun Hwa (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Min Jung (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Jeong, Min Seop (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Jang, Sang Ho (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kang, Jung Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Kwon, Hyeok Yil (Department of Physiology, College of Medicine, Hallym University) ;
  • Kang, Tae-Cheon (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Won, Moo Ho (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Kwon, Oh-Shin (Department of Biochemistry, Kyungpook National University) ;
  • Lee, Kil Soo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Park, Jinseu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won Sik (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University)
  • Received : 2007.05.08
  • Accepted : 2007.10.05
  • Published : 2008.02.29

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.

Keywords

Acknowledgement

Supported by : Korean Science and Engineering Foundation

References

  1. Aguirre, T., Van Den Bosch, L., Goetschalckx, K., Tilkin, P., Mathijs, G., Cassiman, J.J., and Robberecht, W. (1998). Increased sensitivity of fibroblasts from familial amyotrophic lateral sclerosis patients to oxidative stress. Ann. Neurol. 43, 452-457 https://doi.org/10.1002/ana.410430407
  2. Andersen, P.M. (2001). Genetics of sporadic ALS. Amyotroph.Lateral Scler. Other. Mol. Neruon Disord. 2 (Suppl. 1), S37-S41 https://doi.org/10.1080/14660820152415726
  3. Andrus, P.K., Fleck, T.J., Gurney, M.E., and Hall, E.D. (1998). Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 71, 2041-2048 https://doi.org/10.1046/j.1471-4159.1998.71052041.x
  4. Bellmann, K., Wenz, A., Radons, J., Burkart, V., Kleemann, R., and Kolb, H. (1995). Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J. Clin. Invest. 95, 2840-2845 https://doi.org/10.1172/JCI117989
  5. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Brochelt, D.R., Guarnieri, M., Wong, P.C., Lee, M.K., Slunt, H.S., Xu, Z.S., Sisodia, S.S., Price, D.L., and Cleveland, D.W. (1995). Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not a affect wild type subunit function. J. Biol. Chem. 270, 3234-3238 https://doi.org/10.1074/jbc.270.7.3234
  7. Brooks, B.R., Sanjak, M., Belden, D., Juhasz-Poscine, K., and Waclawik, A. (2000). Amyotrophic lateral sclerosis. R.H., Brown, V., Meininger, M., Swash, eds. (London, UK), pp. 31-58
  8. Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D., Ohama, E., Reaume, A.G., Scott, R.W., and Cleveland, D.W. (1998). Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild type SOD1. Science 281, 1851-1854 https://doi.org/10.1126/science.281.5384.1851
  9. Choi, H.S., An, J.J., Kim, S.Y., Lee, S.H., Kim, D.W., Yoo, K.Y., Won, M.H., Kang, T.C., Kwon, H.J., Kang, J.H., et al. (2006a). PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068 https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  10. Choi, S.H., Kim, S.Y., An, J.J., Lee, S.H., Kim, D.W., Ryu, H.J., Lee, N.I., Yeo, S.I., Jang, S.H., Won, M.H., et al. (2006b). Human PEP-1-ribosomal protein S3 protects against UVinduced skin cell death. FEBS Lett. 580, 6755-6762 https://doi.org/10.1016/j.febslet.2006.11.038
  11. Cleveland, D.W. and Rothstein, J.D. (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806-819 https://doi.org/10.1038/35097565
  12. Durham, H.D., Roy, J., Dong, L., and Figlewicz, D.A. (1997). Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523-530 https://doi.org/10.1097/00005072-199705000-00008
  13. Eum W.S., Choung, I.S., Li, M.Z., Kang, J.H., Kim, D.W., Park, J., Kwon, H.Y., and Choi, S.Y. (2004a). HIV-1 Tat mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic $\beta$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  14. Eum, W.S., Kim, D.W., Hwang, I.K., Yoo, K.Y., Kang, T.C., Jang, S.H., Choi, H.S., Choi, S.H., Kim, Y.H., Kim, S.Y., et al. (2004b). In vivo protein transduction: Biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  15. Fawell, S., Seery, J., and Daikh, Y. (1991). Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668
  16. Ferrante, R.J., Brown, S.E., Shinobu, L.A., Bowling, A.C., Baik, M.J., MacGarvey, U., Kowall, N.W., Brown, R.H., and Beal, M.F. (1997). Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064-2074 https://doi.org/10.1046/j.1471-4159.1997.69052064.x
  17. Fridovich, I. (1995). Superoxide radical and superoxide dismutase. Annu. Rev. Biochem. 64, 97-112 https://doi.org/10.1146/annurev.bi.64.070195.000525
  18. Gabbinanelli, R., Ferri, A., Rotilio, G., and Carri, M.T. (1999). Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J. Neurochem. 73, 1175-1180 https://doi.org/10.1046/j.1471-4159.1999.0731175.x
  19. Garrido, C., Gurbuxani, S., Ravagnan, L., and Kroemer, G. (2001). Heat shock proteins: endogeneous modulators of apoptotic cell death. Biochem. Biophys. Res. Commum. 286, 433-442 https://doi.org/10.1006/bbrc.2001.5427
  20. Gaudette, M., Hirano, M., and Siddique, T. (2000). Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other. Mol. Neruon Disord. 1, 83-89 https://doi.org/10.1080/14660820050515377
  21. Goto, J.J., Zhu, H., Sanchez, R.J., Nersissian, A., Gralla, E.B., Valentine, J.S., and Cabelli, D.E. (2000). Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutase associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 275, 1007-1014 https://doi.org/10.1074/jbc.275.2.1007
  22. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.G., Polchow, C. Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H. X., et al. (1994). Motor neuron degeneration in mice that express a human Cu,Zn-superoxide dismutase mutantion. Science 264, 1772-1775 https://doi.org/10.1126/science.8209258
  23. Ha, K.T., Lee, Y.C., Cho, S.H., Kim, J.K., and Kim, C.H. (2004). Molecular characterization of membrane type and ganglioside-specific sialidase (Neu3) expressed in E. coli. Mol. Cells 17, 267-273
  24. Hough, M.A., Grossmann, J.G., Antonyuk, S.V., Strange, R.W., Doucette, P.A., Rodriguez, J.A., Whitson, L.J., Hart, P.J., Hayward, L.J., Valentine, J.S., et al. (2004). Dimer destabilization in superoxide dismutase ay results in disease-causing properties: structures of motor neuron disease mutants. Proc. Natl. Acad. Sci. USA 101, 5976-5981
  25. Johnston, J.A., Dalton, M.J., Gurney, M.E., and Kopito, R.R. (2000). Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 12571-12576
  26. Kang, J.H. and Eum, W.S. (2000). Enhanced oxidative damage by the familial amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutants. Biochim. Biophys. Acta 1524, 162-170 https://doi.org/10.1016/S0304-4165(00)00153-7
  27. Kim, C.H. (2003). A Salmonella typhimurium rfaE mutants recovers invasiveness for human epithelial cells when complemented by wild type rfaE (confering biosynthesis of ADPL-glycero-D-manno-heptose-containing lipopolysaccharide). Mol. Cells 15, 226-232
  28. Kim, D.W., Eum, W.S., Jang, S.H., Kim, S.Y., Choi, H.S., Choi, S.H., An, J.J., Lee, S.H., Lee, K.S., Han, K., et al. (2005). Transduced Tat-SOD fusion protein protects against ischemic brain injury. Mol. Cells 19, 88-96
  29. Latchman, D.S. (2005). HSP27 and cell survival in neurons. Int. J. Hyperthermia. 21, 393-402 https://doi.org/10.1080/02656730400023664
  30. Liu, H., Zhu, H., Eggers, D.K., Nersissian, A.M., Faull, K.F., Goto, J.J., Ai, J., Sanders-Loehr, J., Gralla, E.B., and Valentine, J.S. (2000). Copper(2+) binding to the surface residue cystein 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry 39, 8125-8132 https://doi.org/10.1021/bi000846f
  31. MaCord, J.M. and Fridovich, I. (1969). Superoxide dismutase. J. Biol. Chem. 244, 6049-6055
  32. Manning-Bog, A.B., McCormack, A.L., Purisai, M.G., Bolin, L.M., and Di Monte, D.A. (2003). $\alpha$-synuclein overexpression protects against paraquat-induced neuro degeneration. J. Neurosci. 23, 3095-3099
  33. Morris, M.C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176 https://doi.org/10.1038/nbt1201-1173
  34. Mulder, D.W., Kurland, L.T., Offord, K.P., and Beard, C.M. (1986). Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36, 511-517 https://doi.org/10.1212/WNL.36.4.511
  35. Naval, M.V., Gomez-Serranillos, M.P., Carretero, M.E., and Villar, A.M. (2007). Neuroprotective effect of a ginseng (Panax ginseng) root extract on astrocytes primary culture. J. Ethnopharmacol. 112, 262-270 https://doi.org/10.1016/j.jep.2007.03.010
  36. Oeda, T., Shimohama, S., Kitagawa, N., Kohno, R., Imura, T., Shibasaki, H., and Ishii, N. (2001). Oxidative stress causes abnomal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Human Mol. Genetic. 10, 2013-2023 https://doi.org/10.1093/hmg/10.19.2013
  37. Okado-Matsumoto, A. and Fridovich, I. (2002). Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci. USA 99, 9010-9014
  38. Prochiantz, A. (2000). Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
  39. Rosen, D.R., Siddigue, T., Patterson, O., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H. X., et al. (1993). Mutation in Cu,Zn-superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62 https://doi.org/10.1038/362059a0
  40. Rowland, L.P. and Shneider, N.A. (2001). Amyotrophic lateral sclerosis. N. Engl. J. Med. 345, 1131-1132 https://doi.org/10.1056/NEJM200110113451514
  41. Seo, S.M., Lee, J.H., and Kim, Y.M. (2007). Characterization of an iron- and manganese-containing superoxide dismutase from Methyllobacillus Sp. strain SKIDSM8269. Mol. Cells 23, 370-378
  42. Stieber, A., Gonatas, J.O., and Gonatas, N.K. (2000). Aggregation of ubiquitin and a mutant ALS-linked SOD1 protein correlate with disease progressive and fragmentation ofthe Golgi apparatus. J. Neurol. Sci. 173, 53-62 https://doi.org/10.1016/S0022-510X(99)00300-7
  43. Tiwari, A. and Hayward, L.J. (2003). Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J. Biol. Chem. 278, 5984-5992 https://doi.org/10.1074/jbc.M210419200
  44. Vives, E., Brodin, P., and Lebleu, B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 https://doi.org/10.1074/jbc.272.25.16010
  45. Wadia, J.S. and Dowdy, S.F. (2002). Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  46. Wagstaff, M.J.D., Collaco-Moraes, Y., Smith, J., de Belleroche, J., Coffin, R.S., and Latchman, D.S. (1999). Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J. Biol. Chem. 274, 5061-5069 https://doi.org/10.1074/jbc.274.8.5061
  47. Yim, M.B., Kang, J.H., Yim, H.S., Kwak, H.S., Chock, P.B., and Stadtman, E.R. (1996). A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. USA 93, 5709-5714
  48. Yim, H.S., Kang, J.H., Chock, P.B., Stadtman, E.R., and Yim. M.B. (1997). A familial amyotrophic lateral sclerosis-associated A4V Cu,Zn-superoxide dismutase mutants has a low Km for hydrogen peroxide: Correlation between clinical severity and the Km value. J. Biol. Chem. 272, 8861-8863 https://doi.org/10.1074/jbc.272.14.8861