• Title/Summary/Keyword: Neuro-Fuzzy Model

Search Result 218, Processing Time 0.028 seconds

Design of Emotion Recognition Model Using fuzzy Logic (퍼지 로직을 이용한 감정인식 모델설계)

  • 김이곤;배영철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.268-282
    • /
    • 2000
  • Speech is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF

Identification of Fuzzy Systems by means of the Extended GMDH Algorithm

  • Park, Chun-Seong;Park, Jae-Ho;Oh, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.254-259
    • /
    • 1998
  • A new design methology is proposed to identify the structure and parameters of fuzzy model using PNN and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and cubic besides the biquadratic polynomial used in the GMDH. The FPNN(Fuzzy Polynomial Neural Networks) algorithm uses PNN(Polynomial Neural networks) structure and a fuzzy inference method. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here a regression polynomial inference is based on consequence of fuzzy rules with a polynomial equations such as linear, quadratic and cubic equation. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture. In this paper, we will consider a model that combines the advantage of both FPNN and PNN. Also we use the training and testing data set to obtain a balance between the approximation and generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

A Compensation for Distortion of Stereo-scopic Camera Image Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론시스템을 이용한 입체 영상 카메라의 왜곡 영상 보정)

  • Seo, Han-Seog;Yim, Wha-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, this study restores the distorted image to its original image by compensating for the distortion of image from a fixed-focus camera lens. The various developments and applications of the imaging devices and the image sensors used in a wide range of industries and expanded use, but due to the needs of the small size and light weight of the camera, the distortion from acquiring images of the distorted curvature of the lens tends to affect many. In particular, the three-dimensional imaging camera, each different distortion of left and right lens cause the degradation of three-dimensional sensitivity and left-right image distortion ratio. we approached the way of generalizing the approximate equations to restore each part of left-right camera images to the coordinators of the original images. The adaptive Neuro-Fuzzy Inference System is configured for it. This system is divided from each membership function and is inferred by 1st order Sugeno Fuzzy model. The result is that the compensated images close to the left, right original images. Using low-cost and compact imaging lens by which also determine the exact three-dimensional image-sensing capabilities and will be able to expect from this study.

Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes

  • Yaqub, Muhammad;EREN, Beytullah;Eyupoglu, Volkan
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.418-425
    • /
    • 2020
  • In this study soft computing techniques including, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were investigated for the prediction of Cr(VI) transport efficiency by novel Polymer Inclusion Membranes (PIMs). Transport experiments carried out by varying parameters such as time, film thickness, carrier type, carier rate, plasticizer type, and plasticizer rate. The predictive performance of ANN and ANFIS model was evaluated by using statistical performance criteria such as Root Mean Standard Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). Moreover, Sensitivity Analysis (SA) was carried out to investigate the effect of each input on PIMs Cr(VI) removal efficiency. The proposed ANN model presented reliable and valid results, followed by ANFIS model results. RMSE and MAE values were 0.00556, 0.00163 for ANN and 0.00924, 0.00493 for ANFIS model in the prediction of Cr(VI) removal efficiency on testing data sets. The R2 values were 0.973 and 0.867 on testing data sets by ANN and ANFIS, respectively. Results show that the ANN-based prediction model performed better than ANFIS. SA demonstrated that time; film thickness; carrier type and plasticizer type are major operating parameters having 33.61%, 26.85%, 21.07% and 8.917% contribution, respectively.

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

Design of Precipitation/non-precipitation Pattern Classification System based on Neuro-fuzzy Algorithm using Meteorological Radar Data : Instance Classifier and Echo Classifier (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 강수/비강수 패턴분류 시스템 설계 : 사례 분류기 및 에코 분류기)

  • Ko, Jun-Hyun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1114-1124
    • /
    • 2015
  • In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.

Applicability Analysis of Flood Forecasting in Nakdong River Basin using Neuro-Fuzzy Model (Neuro-Fuzzy 모형에 의한 낙동강유역의 홍수예측 적용성 분석)

  • Rho, Hong-Sik;Kim, Tae-Hyung;Kim, Pan-Gu;Han, Kun-Yeun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.642-642
    • /
    • 2012
  • 최근에 들어 지구온난화에 따른 기후변화의 영향으로 국지성 집중호우와 돌발성 호우가 한반도 뿐 아니라 전 세계적으로도 많이 나타나고 있고, 그로 인한 이상홍수의 발생이 우리나라의 인명 및 재산피해를 날로 증가시키고 있는 추세이다. 그러나 현재 국내의 홍수방어시스템은 정확도 및 선행시간 확보 등의 측면에서 국민들의 요구수준까지는 그 역할을 수행하지 못하고 있는 실정이다. 또한 최근 4대강 살리기 사업을 통해 수행된 보 설치 및 하도 준설로 인해 하천환경의 변화가 크게 발생하여, 보다 정확하고 신속한 홍수위 예측기법이 요구되고 있는 실정이다. 이에 따라 현재 4대강 홍수통제소에서는 정확한 홍수위예측을 위해 4대강 본류 및 주요 지류에 대해 수리모형을 구축하고 있고, 기존의 저류함수모형에 의한 강우-유출 해석기법을 적용하여 주요 지류에 대한 유입량을 산정하기 위한 모형을 구축중에 있다. 국내 홍수방어 시스템에 현재까지 사용되어 오고 있는 저류함수모형 및 수위-유량 관계식을 이용한 방법은 물리적 기반의 홍수예측모형으로 유역의 지형학적 인자와 그에 따른 여러 변수를 포함하기 때문에 하천환경의 변화로 인해 각각의 추적과정에서 오차들이 발생하여 해석결과에 영향을 미치는 단점이 있다. 이에 반해 데이터 기반 모형은 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측하는 모형이다. 본 연구에서는 낙동강 유역에 대해 보다 정확한 홍수위 예측을 위해 현재 낙동강홍수통제소에서 구축중인 낙동강 본류의 수리모형의 주요 지류의 유입량 산정을 위해 기존의 물리적 기반 모형이 아닌 뉴로-퍼지(Neuro-Fuzzy) 모형을 이용한 data 기반 모형을 적용해 기존 물리적 기반 모형과 비교 분석 하고자 하였다. 낙동강의 주요지류인 감천, 금호강, 남강, 내성천, 밀양강, 반변천, 위천, 황강을 적용유역으로 선정하여 유역별로 티센망을 구축하였고, 각 지류별로 수위관측소를 선정하여 최근 10년동안 낙동강유역의 홍수예 경보가 발령되었거나 많은 비가 온 사상을 선정해 모형을 검증하였다. 모형은 실시간 수위측정 자료와 강우자료 및 해당유역 댐의 방류량 자료를 이용해 유역별 최적 입력자료 조합을 선정하여 간단하게 구축할 수 있었다. 또한 10분 단위 및 30분 단위의 입출력 자료로 모형을 구축하여 비교하였다. 이번 연구에서 수행한 낙동강유역에서의 뉴로-퍼지(Neuro-Fuzzy) 모형을 이용한 홍수예측기법을 통해 몇가지 data만으로 유역의 주요지점에 대한 홍수위와 홍수량을 예측할 수 있음을 확인할 수 있었다. 모의 결과는 실측치와 비교해 정확도 면에서 우수함을 보여 주었으나 예측시간이 길어질수록 실측치의 경향을 벗어나는 결과를 보였다. 그러나 실시간 홍수예 경보에 있어서는 만족할만한 선행시간을 확보할 수 있었다. 구축된 Data 기반 모형이 물리적 기반 모형과 더불어 낙동강 홍수예 경보를 위한 모형으로 사용될 수 있다면 보다 효율적인 예 경보 체계 구축에 도움을 줄 수 있을 것으로 판단된다.

  • PDF