• Title/Summary/Keyword: Neuro fuzzy system

Search Result 400, Processing Time 0.024 seconds

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

A Neuro-Fuzzy System Reconstructing Nonlinear functions from Chaotic Signals

  • Eguchi, Kei;Ueno, Fumio;Tabata, Toru;Zhu, Hong-Bin;Nagahama, Kaeko
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1021-1024
    • /
    • 2000
  • In this paper, a neuro-fuzzy system for quantitative characterization of chaotic signals is proposed. The proposed system is differ from the previous methods in that the nonlinear functions of the nonlinear dynamical systems are calculated as the invariant factor. In the proposed neuro-fuzzy system, the nonlinear functions are determined by supervised learning. From the reconstructed nonlinear functions, the proposed system can generate extrapolated chaotic signals. This feature will help the study of nonlinear dynamical systems which require large number of chaotic data. To confirm the validity of the proposed system, nonlinear functions are reconstructed from 1-dimensional and 2-dimensional chaotic signals.

  • PDF

Fuzzy Modeling and Design of Fuzzy Controller Using Fuzzy Clustering (퍼지 클러스터링을 이용한 퍼지 모델링과 퍼지 제어기의 설계)

  • Kwag, Keun-Chang;Park, Sang-Min;Ryu, Jeong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.675-678
    • /
    • 1997
  • In this paper, we present a fast and robust algorithm for the design of fuzzy controller and identifying fuzzy model from numerical data by combining the cluster estimation method with a linear least squares estimation procedure. The proposed method is compared with Adaptive Neuro-Fuzzy Inference System(ANFIS) as the standard example of neuro-fuzzy model. Finally we will show its usefulness and effectiveness for the design of fuzzy controller of a cart-pole system and fuzzy modeling for the coagulant dosing of a water purification system.

  • PDF

Identification of Nonlinear Dynamic Systems via the Neuro-Fuzzy Computing and Genetic Algorithms

  • Lee, Seon-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1892-1896
    • /
    • 2005
  • In this paper, an effective method for selecting significant input variables in building ANFIS (Adaptive Neuro-Fuzzy Inference System) for nonlinear system modeling is proposed. Dominant inputs in a nonlinear system identification process are extracted by evaluating the performance index and they are applied to ANFIS. The availability of our proposed model is verified with the Box and Jenkins gas furnace data. The comparisons with other methods are also given in this paper to show our proposed method is superior to other models.

  • PDF

Control of Magnetic Flywheel System by Neuro-Fuzzy Logic (뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구)

  • Yang Won-Seok;Kim Young-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

Fault Location using Neuro-Fuzzy in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전계통에서의 고장점 추정)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.319-322
    • /
    • 2002
  • Distance relay is operated in calculating line impedance. It can be worked accurately in overhead line. However, power cables or combined transmission lines need compensation for calculated impedance because cable systems have sheaths, grounding wires and sheath voltage limiters(SVLs) Neuro-fuzzy can be viewed either as a fuzay system, a neural network or fuzzy neural network and it can estimate the location of the fault accurately. In this paper, fault section and fault location can be classified and estimated in neuro- fuzzy inference system and neural network.

  • PDF

A Study on the Image Filter using Neuro-Fuzzy (뉴로-퍼지를 이용한 영상 필터 연구)

  • 변오성;이철희;문성룡;임기영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.83-86
    • /
    • 2001
  • In this paper, it study about the image filter applied the hybrid fuzzy membership function to the neuro-fuzzy system. Here, this system applys the genetic algorithm in order to obtain the optimal image as the iteration carry for making the data value in the error. It is removed the included noise in an image using the proposed image filter and compared the proposed image filter performance with the other filters using MATLAB. And it is found that the proposed filter performance is superior to the other filters which has the similar structure through the images. To show the superior ability, it is compared with MSE and SNR for images.

  • PDF

Generalized Fuzzy Modeling

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1145-1150
    • /
    • 1993
  • In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.

  • PDF

A Neuro Fuzzy Controller Using Auto-tuning Width of Membership Function for Equipment Systems (설비시스템을 위한 소속함수 폭의 자동동조를 사용한 뉴로퍼지 제어기)

  • 이수흠;방근태
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The width of fuzzy membership function and control rule has an effect on performance of the fuzzy controller for electric equipment systems. In this paper, the neuro-fuzzy controller is proposed to im¬prove the performance of fuzzy controller. It has the width of membership function, that is adapted to the electrical parameter using multi-layer neural network, it is applied to first order electric power system with dead time and various plant constant. The related simulation resolts show that the pro¬posed neuro fuzzy controller are superior characteristics of improved performance

  • PDF