• Title/Summary/Keyword: Neuro control

Search Result 450, Processing Time 0.029 seconds

Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어)

  • Gang, Yeong-Ho;Kim, Nak-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller (적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.730-737
    • /
    • 2001
  • In this paper, an stabilization control method using adaptive neuro-fuzzy controller(ANFC) is proposed for modeling of nonlinear complex systems. The proposed adaptive neuro-fuzzy controller implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks from input and output data of processes. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

AC Servo Motor Control Using Neuro Observer (뉴로 관측기를 이용한 교류서보 전동기 제어)

  • Yoon, Kwang-Ho;Kim, Sang-Hoon;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.69-71
    • /
    • 2004
  • DC servo motors have a defect that they need a periodical maintenance because of a brush commutation and also they have a difficulty at high speed operation. In this reason, the use of AC Servo motors are increasing these days. In this paper, a proposed neuro observer is applied to speed control of AC servo motor. The proposed observer complement a problem that occur from increase of gain of High-gain observer in proportion to the square number of observable state variables. And also, the proposed observer can tune the gain obtained by differentiating observational error automatically by using the backpropagation training method to stabilize the observational speed. The excellence and feasibility of the proposed observer is proved by making a comparison test between the proposed observer and the others applied to the same AC servo motor.

  • PDF

Design of Neuro-Fuzzy Controller for Velocity Control of DC Servo Motor with Variable Loads (가변부하를 갖는 직류 서보 전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계)

  • Kim, Sang-Hoon;Kang, Young-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.513-515
    • /
    • 1999
  • In this paper, Neuro-Fuzzy controller which has the characteristic of Fuzzy control and artificial Neural Network is designed A fuzzy rule to be applied is selected automatically by the allocated neurons. The neurons correspond to Fuzzy rules which are created by the expert. In order to adaptivity, the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in Neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of Dual mode Method. To test the effectiveness of the algorithm designed above the experiment for DC servo motor with variable load as variable load plant is implementation.

  • PDF

Nonlinear PID Controller with Neural Network based Compensator (신경회로망 보상기를 갖는 비선형 PID 제어기)

  • Lee, Chang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

Speed control of AC Servo Motor with Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 교류 서보 전동기의 속도제어)

  • Kim, Jong-Hyun;Kim, Sang-Hoon;Ko, Bong-Un;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2018-2020
    • /
    • 2001
  • In this study, a Neuro-Fuzzy Controller which has the characteristic of Fuzzy control and Artificial Neural Network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to Fuzzy rules are created by an expert. To adapt the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in the Neuro-Fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of an algorithm designed above, an operating characteristic of a AC servo motor is investigated.

  • PDF

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.

Neuro-genetic controller design of the line of sight system (유전알고리듬에 의한 조준경 시스템의 신경망제어기 설계)

  • 이승수;장준오;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.956-959
    • /
    • 1996
  • In this study, we propose a neuro-genetic controller combined with a linear controller in parallel to improve the tracking performance of the Line of Sight(LOS) stabilization system and reject the effect of disturbances. A Genetic Algorithm(GA) is used to optimize weights of the neuro-genetic controller since this algorithm can search a global minimum without derivatives or other auxiliary knowledge. The LOS system is very complex and has limited measurable output data. Under these specific circumstances GA solves many problems that other training methods have. Computer simulation results show that the, proposed controller makes better tracking response and rejection of disturbance than a linear controller.

  • PDF

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF