This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.
Journal of information and communication convergence engineering
/
제5권1호
/
pp.50-53
/
2007
This paper presents face features detection and a new physiological neuro-fuzzy learning method by using two-dimensional variances based on variation of gray level and by learning for a statistical distribution of the detected face features. This paper reports a method to learn by not using partial face image but using global face image. Face detection process of this method is performed by describing differences of variance change between edge region and stationary region by gray-scale variation of global face having featured regions including nose, mouse, and couple of eyes. To process the learning stage, we use the input layer obtained by statistical distribution of the featured regions for performing the new physiological neuro-fuzzy algorithm.
본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)방법 중 하나인 차감 클러스터링(Subtractive Clustering)을 사용하였다. 또한 본 연구에서는 정성적인 기상예보정보를 정량화 시키는 방법을 제안하였다. AMFIS를 이용하여 월 댐유입량 예측 시, 관측자료만으로 구성된 모형에 의한 예측결과와 관측자료에 기상예보정보를 더하여 구성된 모형에 의한 예측결과를 비교하였다. 그 결과 ANFIS는 기상예보정보를 활용하여 댐유입량을 예측했을 때가 관측자료만으로 예측했을 때보다 예측능력이 더욱 정확함을 보였다.
The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.
감정을 정확히 예측하는 것은 환자중심의 의료디바이스 개발 및 감성관련 산업에서 매우 중요한 이슈이다. 감정예측에 관한 많은 연구 중 감정 예측에 심박 변동성과 뉴로-퍼지 접근법을 적용한 연구는 없다. 본 연구는 HRV를 이용한 ANFEP(Adaptive Neuro Fuzzy system for Emotion Prediction)을 제안한다. ANFEP의 핵심 기능은 인공 신경망과 퍼지시스템을 통합해 예측 모델을 학습하는 ANFIS(Adaptive Neuro-Fuzzy Inference System)에 기반한다. 제안 모형의 검증을 위해 50명의 실험자를 대상으로 청각자극으로 감정을 유발하고, 심박변이도를 구하여 ANFEP 모형에 입력하였다. STDRR과 RMSSD를 입력으로 하고 입력변수 당 2개의 소속함수로 하는 ANFEP모형이 가장 좋은 결과를 나타났다. 제안한 감정예측 모형을 선형회귀 분석, 서포트 벡터 회귀, 인공신경망, 랜덤 포레스트와 비교한 결과 본 제안모형이 가장 우수한 성능을 보였다. 연구 결과는 보다 적은 입력으로 신뢰성 높은 감정인식이 가능함을 입증했고, 이를 활용해 보다 정확하고 신뢰성 높은 감정인식 시스템 개발에 대한 연구가 필요하다.
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.845-848
/
1993
This paper proposes a design method of fuzzy phase-lead compensator and its self-learning by neural network. The main feature of the fuzzy phase-lead compensator is to have parameters for effectively compensating phase characteristics of control systems. An important theorem which is related to phase-lead compensation is derived by introducing concept of frequency characteristics. We propose a design procedure of fuzzy phase-lead compensators for linear controlled objects. Furthermore, we realize a neuro-fuzzy compensator for unknown or nonlinear controlled objects by using Widrow-Hoff learning rule.
In GMAW(Gas Metal Arc Welding) process, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWB (contact- tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using negro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks.
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.1145-1150
/
1993
In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.
전력부하 설비시스템에 장치하는 퍼지제어기의 성능은 제어대상의 변화에 민감하여 제어대상이 바뀔때마다 퍼지 소속함수폭이나 제어규칙을 조정해야 한다. 본 논문은 퍼지제어기의 성능에 영향을 미치는 요소들을 종합적으로 고찰하여, 제어대상의 변화에 적응하여 최적의 퍼지 소속함수폭에 자동동조하는 다층 신경회로망을 사용한 성능이 개선된 뉴로퍼지제어기를 제안하여 구성하였다. 이것을 다양한 일차지연요소를 갖는 설비시스템의 시뮬fp에션을 하여 우수한 제어 특성을 확인하였다.
본 논문에서는 지연시간을 갖는 비선형 시스템의 효율적 제어를 위해 퍼지-신경망에 기반한 지연시간 보상기를 제안하였다. 제안된 제어시스템은 ANFIS(Adaptive Neuro-Fuzzy Inference System)라고 불리는 두개의 퍼지-신경망으로 구성되며 이중 하나는 직-병렬 방식으로 동작하고 다른 하나는 병렬 방식으로 동작한다. 직-병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 갖는 비선형 시스템의 응답을 추종하는 특성을 갖으며 병렬 방식으로 동작하는 퍼지-신경망은 지연시간을 보상하기 위한 시스템 출력을 예측하는 기능을 수행한다. 따라서 본 연구에서 제안된 시스템은 전형적인 Smith 예측기의 비선형 시스템에의 적용을 위한 확장이라고 생각할 수 있다. 본 논문에서는 제안된 지연시간 보상기의 상세한 설계과정을 보였으며 또한 제안된 제어기 설계 기법의 유용성 화인을 위해 비선형 수치데이터에 대한 컴퓨터 모의실험을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.