• Title/Summary/Keyword: Neural-Networks

Search Result 4,870, Processing Time 0.037 seconds

Training an Artificial Neural Network for Estimating the Power Flow State

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.275-280
    • /
    • 2005
  • The principal context of this research is the approach to an artificial neural network algorithm which solves multivariable nonlinear equation systems by estimating the state of line power flow. First a dynamical neural network with feedback is used to find the minimum value of the objective function at each iteration of the state estimator algorithm. In second step a two-layer neural network structures is derived to implement all of the different matrix-vector products that arise in neural network state estimator analysis. For hardware requirements, as they relate to the total number of internal connections, the architecture developed here preserves in its structure the pronounced sparsity of power networks for which state the estimator analysis is to be carried out. A principal feature of the architecture is that the computing time overheads in solution are independent of the dimensions or structure of the equation system. It is here where the ultrahigh-speed of massively parallel computing in neural networks can offer major practical benefit.

  • PDF

Design of Neural Networks Model for Transmission Angle of a Modified Mechanism

  • Yildirim Sahin;Erkaya Selcuk;Su Siikrii;Uzmay ibrahim
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1875-1884
    • /
    • 2005
  • This paper discusses Neural Networks as predictor for analyzing of transmission angle of slider-crank mechanism. There are different types of neural network algorithms obtained by using chain rules. The neural network is a feedforward neural network. On the other hand, the slider-crank mechanism is a modified mechanism by using an additional link between connecting rod and crank pin. Through extensive simulations, these neural network models are shown to be effective for prediction and analyzing of a modified slider-crank mechanism's transmission angle.

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • In this paper, in order to implement the multi-layered perceptron neural network using pure digital logic circuit model, we propose the new logic neuron structure, the digital canonical multi-layered logic neural network structure, and the multi-stage multi-layered logic neural network structure for pattern recognition applications. And we show that the proposed approach provides an incremental additive learning algorithm, which is very simple and effective.

  • PDF

A Decentralized Approach to Power System Stabilization by Artificial Neural Network Based Receding Horizon Optimal Control (이동구간 최적 제어에 의한 전력계통 안정화의 분산제어 접근 방법)

  • Choi, Myeon-Song
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.815-823
    • /
    • 1999
  • This study considers an implementation of artificial neural networks to the receding horizon optimal control and is applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system with simpler local controllers that need only local information. A Neural network based Receding horizon Optimal Control (NROC) 1aw is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural networks, Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN). The proposed NROC is applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

  • PDF

Formulation of the Neural Network for Implicit Constitutive Model (II) : Application to Inelastic Constitutive Equations

  • Lee, Joon-Seong;Lee, Eun-Chul;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.264-269
    • /
    • 2008
  • In this paper, two neural networks as a material model, which are based on the state-space method, have been proposed. One outputs the rates of inelastic strain and material internal variables whereas the outputs of the other are the next state of the inelastic strain and material internal variables. Both the neural networks were trained using input-output data generated from Chaboche's model and successfully converged. The former neural network could reproduce the original stress-strain curve. The neural network also demonstrated its ability of interpolation by generating untrained curve. It was also found that the neural network can extrapolate in close proximity to the training data.

Neural Network Design for Spatio-temporal Pattern Recognition (시공간패턴인식 신경회로망의 설계)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

Hybrid Neural Networks for Pattern Recognition

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.637-640
    • /
    • 2011
  • The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.

The analysis of EEG under color stimulation and the quantization of emotion using learning neural network (색 자극에 대한 뇌전위 분석과 신경망 학습을 통한 인간 감성의 정량화에 관한 연구)

  • 김희선;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1628-1630
    • /
    • 1997
  • The purpose of this study is to see the method of the analysis of EEG(Electroencephalography) whcih is a nonlinear system, to quantize human emotion under color stimulation using the analysis of EEG. The result of this study would be used clinical study and development fo image instruments with color. In this study, the method of the analysis of EEG is power spectrum using FFT(Fast Fourier Transform) and the modelling of EEG under color stimulation base on back propagation Neural Networks ond of AI(Artfical Intellignece) skills. First, input layer make a match to relative power which get analyzing s in 4 channels, and output layer make a match to color stimulation which is measured human emotion. Finally, weights of each neurons determine by learing back porpagation Neural Networks.

  • PDF

Damage Assessment of Simple Beam using Acceleration Response Signal and Multilayer Neural Network (가속도 응답 신호와 다층인공신경망을 통한 단순보의 손상추정)

  • Lee Yong-Hwan;Park Jae-Hyung;Kim Jeong-Tae;Ryu Yeon-Sun;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.367-374
    • /
    • 2005
  • The use of system identification approaches for damage detection has been expanded in recent years. Soft computing techniques such as neural networks have been utilized increasingly. Damage assessment using neural networks is presented in this study. Data set for training neural networks are acceleration response of simple beam under the various damage states ,which are the inputs. The outputs are the damage locations and extents. Not only the trained damages but also untrained damages are. detected accuratelyintheassessmentstage.

  • PDF