In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.
This paper describes controller design and implementation method for controlling the temperature distribution in a thermal stratified wind tunnel(TSWT) by using a neural network algorithm. It is impossible to derive a mathematical model of the relation between heat inputs and temperature outputs in the test section of the TSWT governed by a nonlinear turbulent flow. Thus inverse neural network models with a multi layer perceptron structure are used in a feedforward control loop and feedback control loop to generate an arbitrary temperature distribution in the test section of the TSWT.
This article describes a novel model-based compensating neural network (NN) model developed to be used in our active binocular head controller, which addresses both the kinematics and dynamics aspects in trying to precisely track a moving object of interest to keep it in view. The compensating NN model is constructed using two classes of self-tuning neural models: namely Neural Gas (NG) algorithm and SoftMax function networks. The resultant servo controller is shown to be able to handle the tracking problem with a minimum knowledge of the dynamic aspects of the system.
Anyone observes that information processing in animal brains is depended on neural networks. On the other hand, engineering models for the neural networks are well known now, and they have been studied, and learning facility is found in the model. We are sure there is a potential in order to create a non Neuman-machine in the engineering models. We studied iteration forms including the engineering neural network models, taking a first step for the creation.
This paper proposes an efficient fault diagnosis for digital circuits using multilayer neural networks. The efficient learning algorithm is also proposed for the multilayer neural network, which is combined the steepest descent for high-speed optimization and the dynamic tunneling for global optimization. The fault-diagnosis system using the multilayer neural network of the proposed algorithm has been applied to the parity generator circuit. The simulation results shows that the proposed system is higher convergence speed and rate, in comparision with system using the backpropagation algorithm based on the gradient descent.
Concrete mix degign and adjustments are somewhat complicated and time-consuming tasks in which various uncertainties and errors are involved and depend on the quality control test results. In this paper, as a tool to minimize the uncertainties and errors the neural network is applied to the concrete mix design. Input data to train and test the neural network are obtained from the results of design and adjustments following the concrete standard specifications of Korea. The results show that neural networks have a strong potential as a tool for concrete mix design.
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.1171-1174
/
1993
A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.
Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
대한치매학회지
/
제17권3호
/
pp.83-89
/
2018
Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.
본 논문에서는 호 수락 제어 문제를 해결하기 위해 퍼지 논리 제어기의 장점과 신경망의 학습 능력을 이용한 ATM 망의 호 수락 제어 시스템을 제안하였다. ATM 망의 새로운 호는 현재 서비스 중인 호의 서비스 품질(QoS : quality of service)이 영향을 받지 않을 경우 망에 접속이 된다. 신경망 호 수락 제어 시스템은 입/출력 패턴의 학습으로 예측성 잇게 호 수락/거절을 하는 시스템이다. 본 논문의 퍼지 신경망 호 수락 제어 시스템에서는 학습 속도 개선을 위해 학습율과 모맨텀 상수에 퍼지 추론을 적용하였다. 이 시스템은 시뮬레이션을 통해 기존의 신경망 방법과 퍼지 신경망 방법에서의 학습 횟수 측정으로 제안 알고리즘의 우수성을 검증하였다. 시뮬레이션 결과 퍼지 학습 규칙에 근거한 퍼지 신경망 CAC(call admission control) 방식이 종래의 신경망 이론에 근거한 CAC 방식보다 학습 속도면에서 약 5배의 속도 향상이 있었다.
본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.