• 제목/요약/키워드: Neural-Networks

검색결과 4,870건 처리시간 0.034초

THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo;Hong, Bum Il
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.729-738
    • /
    • 2013
  • In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.

신경회로망을 이용한 열성층 풍동내의 온도 분포 제어 (Control of temperature distribution in a thermal stratified tunnel by using neural networks)

  • 부광석;김경천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.147-150
    • /
    • 1996
  • This paper describes controller design and implementation method for controlling the temperature distribution in a thermal stratified wind tunnel(TSWT) by using a neural network algorithm. It is impossible to derive a mathematical model of the relation between heat inputs and temperature outputs in the test section of the TSWT governed by a nonlinear turbulent flow. Thus inverse neural network models with a multi layer perceptron structure are used in a feedforward control loop and feedback control loop to generate an arbitrary temperature distribution in the test section of the TSWT.

  • PDF

An Application of Active Vision Head Control Using Model-based Compensating Neural Networks Controller

  • Kim, Kyung-Hwan;Keigo, Watanabe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.168.1-168
    • /
    • 2001
  • This article describes a novel model-based compensating neural network (NN) model developed to be used in our active binocular head controller, which addresses both the kinematics and dynamics aspects in trying to precisely track a moving object of interest to keep it in view. The compensating NN model is constructed using two classes of self-tuning neural models: namely Neural Gas (NG) algorithm and SoftMax function networks. The resultant servo controller is shown to be able to handle the tracking problem with a minimum knowledge of the dynamic aspects of the system.

  • PDF

Functional memories constructed of neural network

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.210-213
    • /
    • 1999
  • Anyone observes that information processing in animal brains is depended on neural networks. On the other hand, engineering models for the neural networks are well known now, and they have been studied, and learning facility is found in the model. We are sure there is a potential in order to create a non Neuman-machine in the engineering models. We studied iteration forms including the engineering neural network models, taking a first step for the creation.

  • PDF

다층신경망을 이용한 디지털회로의 효율적인 결함진단 (An Efficient Fault-diagnosis of Digital Circuits Using Multilayer Neural Networks)

  • 조용현;박용수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1033-1036
    • /
    • 1999
  • This paper proposes an efficient fault diagnosis for digital circuits using multilayer neural networks. The efficient learning algorithm is also proposed for the multilayer neural network, which is combined the steepest descent for high-speed optimization and the dynamic tunneling for global optimization. The fault-diagnosis system using the multilayer neural network of the proposed algorithm has been applied to the parity generator circuit. The simulation results shows that the proposed system is higher convergence speed and rate, in comparision with system using the backpropagation algorithm based on the gradient descent.

  • PDF

신경망을 이용한 콘크리트의 배합설계 (Concrete Mix Design using Neural Networks)

  • 오주원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.108-113
    • /
    • 1996
  • Concrete mix degign and adjustments are somewhat complicated and time-consuming tasks in which various uncertainties and errors are involved and depend on the quality control test results. In this paper, as a tool to minimize the uncertainties and errors the neural network is applied to the concrete mix design. Input data to train and test the neural network are obtained from the results of design and adjustments following the concrete standard specifications of Korea. The results show that neural networks have a strong potential as a tool for concrete mix design.

  • PDF

A Fuzzy Neural Network: Structure and Learning

  • Figueiredo, M.;Gomide, F.;Pedrycz, W.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1171-1174
    • /
    • 1993
  • A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.

  • PDF

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • 대한치매학회지
    • /
    • 제17권3호
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

퍼지 신경망을 이용한 ATM망의 호 수락 제어 시스템의 설계 (Design of the Call Admission Control System of the ATM Networks Using the Fuzzy Neural Networks)

  • 유재택;김춘섭;김용우;김영한;이광형
    • 한국정보처리학회논문지
    • /
    • 제4권8호
    • /
    • pp.2070-2079
    • /
    • 1997
  • 본 논문에서는 호 수락 제어 문제를 해결하기 위해 퍼지 논리 제어기의 장점과 신경망의 학습 능력을 이용한 ATM 망의 호 수락 제어 시스템을 제안하였다. ATM 망의 새로운 호는 현재 서비스 중인 호의 서비스 품질(QoS : quality of service)이 영향을 받지 않을 경우 망에 접속이 된다. 신경망 호 수락 제어 시스템은 입/출력 패턴의 학습으로 예측성 잇게 호 수락/거절을 하는 시스템이다. 본 논문의 퍼지 신경망 호 수락 제어 시스템에서는 학습 속도 개선을 위해 학습율과 모맨텀 상수에 퍼지 추론을 적용하였다. 이 시스템은 시뮬레이션을 통해 기존의 신경망 방법과 퍼지 신경망 방법에서의 학습 횟수 측정으로 제안 알고리즘의 우수성을 검증하였다. 시뮬레이션 결과 퍼지 학습 규칙에 근거한 퍼지 신경망 CAC(call admission control) 방식이 종래의 신경망 이론에 근거한 CAC 방식보다 학습 속도면에서 약 5배의 속도 향상이 있었다.

  • PDF

뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구 (Artificial neural network for classifying with epilepsy MEG data)

  • 한유진;김준식;김재희
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.139-155
    • /
    • 2024
  • 본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.