• 제목/요약/키워드: Neural-Networks

검색결과 4,870건 처리시간 0.057초

Color Object Recognition and Real-Time Tracking using Neural Networks

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.135-135
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks that have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, we have a global search for entire image and then have tracking the object through local search when the object is recognized.

  • PDF

뉴로모픽 포토닉스 기술 동향 (Trends in Neuromorphic Photonics Technology)

  • 권용환;김기수;백용순
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구 (A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks)

  • 김진성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

레이저 슬릿빔과 신경망을 이용한 3차원 영상인식 (3-D Image Processing Using Laser Slit Beam and Neural Networks)

  • 김병갑;강이석;최경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.118-122
    • /
    • 1997
  • This paper presents a 3d image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the slit beam on the object is used to estimate the object parameters. The neural networks allow to get the 3D image parameters such as the size, the position and the orientation form the line image without knowing the camera intrinsic parameters.

  • PDF

Crack identification in short shafts using wavelet-based element and neural networks

  • Xiang, Jiawei;Chen, Xuefeng;Yang, Lianfa
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.543-560
    • /
    • 2009
  • The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.

Optimal design of plane frame structures using artificial neural networks and ratio variables

  • Kao, Chin-Sheng;Yeh, I-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.739-753
    • /
    • 2014
  • There have been many packages that can be employed to analyze plane frames. However, because most structural analysis packages suffer from closeness of system, it is very difficult to integrate it with an optimization package. To overcome the difficulty, we proposed a possible alternative, DAMDO, which integrate Design, Analysis, Modeling, Definition, and Optimization phases into an integrative environment. The DAMDO methodology employs neural networks to integrate structural analysis package and optimization package so as not to need directly to integrate these two packages. The key problem of the DAMDO approach is how to generate a set of reasonable random designs in the first phase. According to the characteristics of optimized plane frames, we proposed the ratio variable approach to generate them. The empirical results show that the ratio variable approach can greatly improve the accuracy of the neural networks, and the plane frame optimization problems can be solved by the DAMDO methodology.

커패시터 기반 자가발전 인공 신경망 디바이스 설계 (The design of capacitor-based self-powered artificial neural networks devices)

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.361-367
    • /
    • 2020
  • 본 논문은 초소형 디바이스 분야에서 사용될 수 있는 배터리가 없는 초저전력 자가발전 협업 신경망 시스템을 제공하는 디바이스에 대하여 설명한다. 본 디바이스는 외부에서 전력을 공급하지 않더라도 동작하며, 다른 신경망과 협업하여 대규모의 신경망 구축이 가능하다. 해당 디바이스는 에너지 하베스팅 모듈을 탑재하고 있어 공간적 제약 없이 어느 곳에서나 자가발전을 이용하여 사용이 가능하며, 디바이스 내부의 신경만을 가지고도 동작할 수 있지만 상황에 따라 네트워크를 통해 대규모의 신경망의 일부로 사용하는 것도 가능하다.

A solution of inverse kinematics for manipulator by self organizing neural networks

  • Takemori, Fumiaki;Tatsuchi, Yasuhisa;Okuyama, Yoshifumi;Kanabolat, Ahmet
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.65-68
    • /
    • 1995
  • This paper describes trajectory generation of a riobot arm by self-organizing neural networks. These neural networks are based on competitive learning without a teacher and this algorithm which is suitable for problems in which solutions as teaching signal cannot be defined-e.g. inverse dynamics analysis-is adopted to the trajectory generation problem of a robot arm. Utility of unsupervised learning algorithm is confirmed by applying the approximated solution of each joint calculated through learning to an actual robot arm in giving the experiment of tracking for reference trajectory.

  • PDF

영상처리를 위한 퍼지화된 대각형 Recurrent 신경망에 관한 연구 (A study on the fuzzified Diagonal Recurrent Neural Networks for the Image Processing)

  • 변오성;문성룡
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.478-481
    • /
    • 1999
  • In this paper, we could analyze and compare with the generalized Recurrent neural networks and the Recurrent neural networks applying the fuzzy. The total system is digitalized in order to be filtering the image, and the fuzzy is applied to the generalized Recurrent in order to be fast the operation speed. So the fuzzified Recurrent neural networks are completely removed to the included noise in the image, and could converge on a certain value as controlling the weight and iteration frequency corresponding to the desired target value. Also, that values are compared and analysed using MSE and PSNR. When applying to the image which is included to the noise in the generalized Recurrent and the Recurrent applying the fuzzy, the Recurrent applying the fuzzy is shown the superiority at the noise and the fixed convergence part through MSE and PSNR in the computer simulations.

  • PDF

기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계 (Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding)

  • 이인태;오성권;최정내
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF