References
- Cheng, J. and Li, Q.S. (2009), "A hybrid artificial neural network method with uniform design for structural optimization", Comput. Mech., 44(1), 61-71. https://doi.org/10.1007/s00466-008-0355-2
- Gholizadeh, S. and Salajegheh, E. (2009), "Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel", Comput. Method. Appl. Mech. Eng., 198(37), 2936-2949. https://doi.org/10.1016/j.cma.2009.04.010
- Gholizadeh, S. and Salajegheh, E. (2010a), "Optimal design of structures for earthquake loading by self organizing radial basis function neural networks", Adv. in Struct. Eng., 13(2), 339-356. https://doi.org/10.1260/1369-4332.13.2.339
- Gholizadeh, S. and Salajegheh, E. (2010b), "Optimal seismic design of steel structures by an efficient soft computing based algorithm", J. Constr. Steel Res., 66(1), 85-95. https://doi.org/10.1016/j.jcsr.2009.07.006
- Gholizadeh, S. and Samavati, O.A. (2011), "Structural optimization by wavelet transforms and neural networks", Appl. Math. Model., 35(2), 915-929. https://doi.org/10.1016/j.apm.2010.07.046
- Gholizadeh, S., Sheidaii, M.R. and Farajzadeh, S. (2012), "Seismic design of double layer grids by neural networks", Int. J. Optim. Civ. Eng., 2(1), 29-45.
- Haykin, S. (2007), Neural Networks: A Comprehensive Foundation, Englewood Cliffs, Prentice Hall, NJ.
- Iranmanesh, A. and Kaveh, A. (1999), "Structural optimization by gradient-based neural networks", Int. J. Numer. Meth. Eng., 46(2), 297-311. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2<297::AID-NME679>3.0.CO;2-C
- Kodiyalam, S. and Gurumoorthy, R. (1997), "Neural network approximator with novel learning scheme for design optimization with variable complexity data", AIAA J., 35(4), 736-739. https://doi.org/10.2514/2.166
- Lagaros, N.D., Charmpis, D.C. and Papadrakakis, M. (2005), "An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization", Comput. Method. Appl. Mech. Eng., 194(30), 3374-3393. https://doi.org/10.1016/j.cma.2004.12.023
- Meon, M.S., Anuar, M.A., Ramli, M.H.M., Kuntjoro, W. and Muhammad, Z. (2012), "Frame optimization using neural network", Int. J. Adv. Sci. Eng. Inform. Tech., 2(1), 28-33. https://doi.org/10.18517/ijaseit.2.1.148
- Moller, O., Foschi , R.O., Quiroz, L.M. and Rubinstein, M. (2009), "Structural optimization for performance-based design in earthquake engineering: Applications of neural networks", Struct. Safety, 31(6), 490-499. https://doi.org/10.1016/j.strusafe.2009.06.007
- Nocedal, J. and Wright, S.J. (1999), Numerical optimization, Springer, New York.
- Papadrakakis, M., Lagaros, N. and Tsompanakis, Y. (1998), "Structural optimization using evolution strategies and neural networks", Comput. Method. Appl. Mech. Eng., 156(1), 309-333. https://doi.org/10.1016/S0045-7825(97)00215-6
- Patel, J. and Choi, S.K. (2012), "Classification approach for reliability-based topology optimization using probabilistic neural networks", Struct. Multidiscip. Optim., 45(4), 529-543. https://doi.org/10.1007/s00158-011-0711-2
- Perera, R., Barchin, M., Arteaga, A. and Diego, A.D. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B - Eng., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003
- Yeh, I.C. (1999), "Hybrid genetic algorithms for optimization of truss structures", Comput. Aid. Civil Infra., 14(3), 199-206. https://doi.org/10.1111/0885-9507.00141
- Yeh, J.P. and Chen, K.U. (2012), "Forecasting the lowest cost and steel ratio of reinforced concrete simple beams using the neural network", J. Civil Eng. Constr. Tech., 3(3), 99-107.
Cited by
- Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.655
- Probabilistic seismic response transformation factors between SDOF and MDOF systems using artificial neural networks vol.18, pp.4, 2016, https://doi.org/10.21595/jve.2016.16506
- Optimal dimensioning for the corner combined footings vol.2, pp.2, 2014, https://doi.org/10.12989/acd.2017.2.2.169
- Modeling for the strap combined footings Part I: Optimal dimensioning vol.30, pp.2, 2014, https://doi.org/10.12989/scs.2019.30.2.097
- A new empirical formula for prediction of the axial compression capacity of CCFT columns vol.33, pp.2, 2019, https://doi.org/10.12989/scs.2019.33.2.181
- Displacement prediction of precast concrete under vibration using artificial neural networks vol.74, pp.4, 2014, https://doi.org/10.12989/sem.2020.74.4.559