• Title/Summary/Keyword: Neural-Networks

Search Result 4,944, Processing Time 0.028 seconds

Elman ANNs along with two different sets of inputs for predicting the properties of SCCs

  • Gholamzadeh-Chitgar, Atefeh;Berenjian, Javad
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.399-412
    • /
    • 2019
  • In this investigation, Elman neural networks were utilized for predicting the mechanical properties of Self-Compacting Concretes (SCCs). Elman models were designed by using experimental data of many different concrete mixdesigns of various types of SCC that were collected from the literature. In order to investigate the effectiveness of the selected input variables on the network performance in predicting intended properties, utilized data in artificial neural networks were considered in two sets of 8 and 140 input variables. The obtained outcomes showed that not only can the developed Elman ANNs predict the mechanical properties of SCCs with high accuracy, but also for all of the desired outputs, networks with 140 inputs, compared to ones with 8, have a remarkable percent improvement in the obtained prediction results. The prediction accuracy can significantly be improved by using a more complete and accurate set of key factors affecting the desired outputs, as input variables, in the networks, which is leading to more similarity of the predicted results gained from networks to experimental results.

Analyzing DNN Model Performance Depending on Backbone Network (백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석)

  • Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

Detection of Coffee Bean Defects using Convolutional Neural Networks (Convolutional Neural Network를 이용한 불량원두 검출 시스템)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.316-319
    • /
    • 2014
  • People's interests in coffee are increasing with the expansion of coffee market. In this trend, people's taste becomes more luxurious and coffee bean's quality is considered to be very important. Currently, bean defects are mainly detected by experienced specialists. In this paper, a detection system of bean defects using machine learning is presented. This system concentrates on detecting two main defect types : bean's shape and insect damage. Convolutional Neural Networks are used for machine learning. The neural networks are comprised of two neural networks. The first neural network detects defects in the bean's shape, and the second one detects the bean's insect damage. The development of this system could be a starting point for automated coffee bean defects detection. Later, further research is needed to detect other bean defect types.

  • PDF

Classification and recognition of electrical tracking signal by means of LabVIEW (LabVIEW에 의한 Tracking 신호 분류 및 인식)

  • Kim, Dae-Bok;Kim, Jung-Tae;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.779-787
    • /
    • 2010
  • In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

Preliminary Hull Form Design Using Form Parameter Method and Neural Networks (Form Parameter 방법과 신경망을 이용한 초기 선형 설계)

  • Park, Won;Shin, Sung-Chul;Kim, Soo-Young;Jang, Hyeon-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.174-181
    • /
    • 1999
  • A form parameter method compounds the form parameters which define the hull geometric characteristics. This method can transform a hull form by changing the form parameters. The form parameter method is a hull define method without utilization of mother ships. However it is difficult to determine these form parameters. Thus, we are complemented the form parameter method using the neural networks. It is found that the form parameter method using the neural networks is efficient in hull form design by consideration of application examples.

  • PDF

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control (새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1105-1110
    • /
    • 2011
  • This paper presents an improved direct torque control based on artificial neural networks technique. The major problem that is usually associated with DTC drive is the high torque(speed) ripple. To overcome this problem a torque hysteresis band with variable amplitude is proposed based on artificial neural networks. The artificial neural networks proposed controller is shown to be able to reducing the torque(speed) ripple and dependency on motor parameter and to improve performance DTC especially at high speed and reversal running.

Speed Sensorless of Induction Motor using 2 layer Neural Networks (2단 신경회로망을 이용한 유도전동기의 센서리스제어)

  • Lee, Chang-Min;Choi, Chul;Park, Sung-Joon;Kim, Chul-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.409-412
    • /
    • 2000
  • This paper investigates a novel speed identification of induction motor using 2 layer neural networks. The proposed control strategy is based on neural networks using model of full order state observer. in the proposed neural networks system the error between the desired variable and the adaptive variable is back-propagated to adjust the rotor speed, So that the adaptive variable will coincide with the desired variable. The proposed control algorithm is verified through simulation and experiment using th digital signal processor of TMS320C31

  • PDF

Approximate and Three-Dimensional Modeling of Brightness Levels in Interior Spaces by Using Artificial Neural Networks

  • Sahin, Mustafa;Oguz, Yuksel;Buyuktumturk, Fuat
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1822-1829
    • /
    • 2015
  • In this study, artificial neural networks were used to determine the intensity of brightness in interior spaces. The illumination elements to illuminate indoor spaces were considered, not individually, but as a system. So, during the planned maintenance periods of an illumination system, after its design and installation, simple brightness level measurements must be taken. For a three-dimensional evaluation of the brightness level in indoor spaces in a speedy and accurate manner, the obtained brightness level measurement results and artificial neural network model were used. Upon estimation of the most suitable brightness level for indoor spaces by using the artificial neutral network model, the energy demands required by the illumination elements decreased. Consequently, in this study, with estimations of brightness levels, the extent to which the artificial neutral networks become successful was observed and more correct results have been obtained in terms of both economy and usage.