• 제목/요약/키워드: Neural-Networks

검색결과 4,870건 처리시간 0.037초

백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석 (Analyzing DNN Model Performance Depending on Backbone Network )

  • 박천수
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

A Navigation Algorithm for Autonomous Mobile Robots Using Artificial Immune Networks and Neural Networks

  • Kim, Insic;Lee, Minjung;Park, Youngkiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.106.5-106
    • /
    • 2002
  • 1. Introduction 2. Artificial Immune Networks and Navigation Algorithm 3. Obstacle Avoidance and Goal Approach Behavior 4. Weights Adjustment Using Neural Network 5. Velocity Control and Local Minimum Avoidance 6. Simulation 7. Conclusion

  • PDF

Convolutional Neural Network를 이용한 불량원두 검출 시스템 (Detection of Coffee Bean Defects using Convolutional Neural Networks)

  • 김호중;조태훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.316-319
    • /
    • 2014
  • 전 세계적으로 커피시장이 커짐에 따라서 커피에 대한 사람들의 관심도 또한 커지고 있는 추세이다. 이러한 추세 속에서 사람들의 입맛이 더욱 고급스러워지고 커피의 맛을 결정하는 커피 원두가 중요시 되고 있다. 하지만 현재는 불량원두를 사람이 직접 보고 검출을 하고 있는데, 이는 커피 원두에 대한 전문적 지식이 있는 사람만이 할 수가 있는 작업이다. 따라서 본 논문에서는 기계학습을 이용한 불량원두 검출 시스템을 제안한다. 이 시스템에서는 불량 원두의 종류 중 큰 비율을 차지하는 원두의 모양과 Insect Damage에 대한 불량 검출에 중점을 두었다. 기계학습의 방법으로 Convolutional Neural Network를 사용하였고, 원두의 모양을 검출할 신경망과 Insect Damage를 검출할 신경망 두 개로 구성되어 있다. Insect Damage에 대한 불량을 검출할 때에는 카메라의 노출시간을 길게 하여 원두의 어두운 구멍을 더 돋보이게 하여 데이터를 만들어 신경망을 구축하였다. 이 시스템의 개발로 인하여 사람이 직접 불량 원두를 검출하는 작업을 자동화 시스템으로 전환할 수 있는 시발점이 될 수 있을 것이고, 현재는 원두의 모양과 Insect Damage의 유무만을 중점으로 검출을 하고 있기 때문에, 추후에 다른 여러 가지의 불량에 대해 검출할 수 있는 연구가 필요하다.

  • PDF

LabVIEW에 의한 Tracking 신호 분류 및 인식 (Classification and recognition of electrical tracking signal by means of LabVIEW)

  • 김대복;김정태;오성권
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.779-787
    • /
    • 2010
  • In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

Form Parameter 방법과 신경망을 이용한 초기 선형 설계 (Preliminary Hull Form Design Using Form Parameter Method and Neural Networks)

  • 박원;신성철;김수영;장현재
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.174-181
    • /
    • 1999
  • A form parameter method compounds the form parameters which define the hull geometric characteristics. This method can transform a hull form by changing the form parameters. The form parameter method is a hull define method without utilization of mother ships. However it is difficult to determine these form parameters. Thus, we are complemented the form parameter method using the neural networks. It is found that the form parameter method using the neural networks is efficient in hull form design by consideration of application examples.

  • PDF

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Seo, Sang-Wook;Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2008
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the enviromuent. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어 (A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control)

  • 김종수;서동환;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1105-1110
    • /
    • 2011
  • 본 논문은 신경회로망 기법을 이용하여 직접벡터제어 방식의 문제점을 개선하고자 하였다. 직접벡터제어 방식은 히스테리시스 밴드 폭의 변화로 인해 유도전동기 속도제어 시 맥동이 큰 단점을 가지고 있다. 이러한 문제점을 학습을 통해 오차를 감소시키는 신경회로망 기법을 사용하여 기존의 직접벡터제어 방식에서 발생하던 속도 맥동을 개선하였다.

2단 신경회로망을 이용한 유도전동기의 센서리스제어 (Speed Sensorless of Induction Motor using 2 layer Neural Networks)

  • 이창민;최철;박성준;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2000
  • This paper investigates a novel speed identification of induction motor using 2 layer neural networks. The proposed control strategy is based on neural networks using model of full order state observer. in the proposed neural networks system the error between the desired variable and the adaptive variable is back-propagated to adjust the rotor speed, So that the adaptive variable will coincide with the desired variable. The proposed control algorithm is verified through simulation and experiment using th digital signal processor of TMS320C31

  • PDF

Approximate and Three-Dimensional Modeling of Brightness Levels in Interior Spaces by Using Artificial Neural Networks

  • Sahin, Mustafa;Oguz, Yuksel;Buyuktumturk, Fuat
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1822-1829
    • /
    • 2015
  • In this study, artificial neural networks were used to determine the intensity of brightness in interior spaces. The illumination elements to illuminate indoor spaces were considered, not individually, but as a system. So, during the planned maintenance periods of an illumination system, after its design and installation, simple brightness level measurements must be taken. For a three-dimensional evaluation of the brightness level in indoor spaces in a speedy and accurate manner, the obtained brightness level measurement results and artificial neural network model were used. Upon estimation of the most suitable brightness level for indoor spaces by using the artificial neutral network model, the energy demands required by the illumination elements decreased. Consequently, in this study, with estimations of brightness levels, the extent to which the artificial neutral networks become successful was observed and more correct results have been obtained in terms of both economy and usage.

신경회로망을 이용한 소형 무인항공기 시스템 식별 (System Identification of a Small Unmanned Air Vehicle Using Neural Networks)

  • 송용규;전병호
    • 한국항공우주학회지
    • /
    • 제35권10호
    • /
    • pp.912-917
    • /
    • 2007
  • 논문에서는 신경회로망을 이용하여 소형 무인항공기의 횡/방향 운동 파라미터를 추정하고 기존 파라미터 추정기법인 퓨리에변환을 이용한 추정기법(FTR)과 후처리 기법인 최대공산법(MLE)의 추정 결과와 비교하여 신경회로망 기법을 이용한 파라미터 추정 결과의 신뢰성과 가능성을 확인하였다. 또한 파라미터 추정 결과를 이용하여 선형시스템을 구성하고 비행체의 특성을 확인하였으며, 선형 시뮬레이션을 통하여 추정된 파라미터의 타당성을 검증하였다.