• Title/Summary/Keyword: Neural-Networks

Search Result 4,820, Processing Time 0.036 seconds

THE SIMULTANEOUS APPROXIMATION ORDER BY NEURAL NETWORKS WITH A SQUASHING FUNCTION

  • Hahm, Nahm-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.701-712
    • /
    • 2009
  • In this paper, we study the simultaneous approximation to functions in $C^m$[0, 1] by neural networks with a squashing function and the complexity related to the simultaneous approximation using a Bernstein polynomial and the modulus of continuity. Our proofs are constructive.

Global Convergence of the Hopfield Neural Networks (호프필드 신경회로망의 Global Convergence)

  • 강민제
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.87-91
    • /
    • 2001
  • This paper discusses the influence of input conductance on the convergece of the continuous Hopfield neural networks. The convergence has been analyzed for the input and output nodes of neurons. Also, the characteristics of equilibrium points has been analyzed depending on different values of the input conductance.

  • PDF

An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks

  • Parichatprecha, Rattapoohm;Nimityongskul, Pichai
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.253-268
    • /
    • 2009
  • This study aims to develop a cost-based high-performance concrete (HPC) mix optimization system based on an integrated approach using artificial neural networks (ANNs) and genetic algorithms (GA). ANNs are used to predict the three main properties of HPC, namely workability, strength and durability, which are used to evaluate fitness and constraint violations in the GA process. Multilayer back-propagation neural networks are trained using the results obtained from experiments and previous research. The correlation between concrete components and its properties is established. GA is employed to arrive at an optimal mix proportion of HPC by minimizing its total cost. A system prototype, called High Performance Concrete Mix-Design System using Genetic Algorithm and Neural Networks (HPCGANN), was developed in MATLAB. The architecture of the proposed system consists of three main parts: 1) User interface; 2) ANNs prediction models software; and 3) GA engine software. The validation of the proposed system is carried out by comparing the results obtained from the system with the trial batches. The results indicate that the proposed system can be used to enable the design of HPC mix which corresponds to its required performance. Furthermore, the proposed system takes into account the influence of the fluctuating unit price of materials in order to achieve the lowest cost of concrete, which cannot be easily obtained by traditional methods or trial-and-error techniques.

A Study for Sales and Demand Forecasting Model Using Wavelet Neural Networks (웨이블렛 신경회로망을 이용한 상품 수요 예측 모형에 관한 연구)

  • Lee, Jae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.131-136
    • /
    • 2014
  • In this paper, we develop a fashion products demand forecasting algorithm using ARIMA model and Wavelet Neural Networks model. To show effectiveness of the proposed method, we analyzed characteristics of time-series data collected in "H" company during 2008-2012 and then performed the proposed method through various analyses. As noted in experimental results, the performance of three types model such as ARIMA, Wavelet Neural Networks and ARIMA + Wavelet Neural Networks show 5.179%, 4.553%, and 4.448.% with respect to MAPE(Mean Absolute Percentage Error), respectively. Thus, it is noted that the proposed method can be used to predict fashion products demand for efficient of operation.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

Collision Risk Assessment for Pedestrians' Safety Using Neural Network (신경 회로망을 이용한 보행자와의 충돌 위험 판단 방법)

  • Kim, Beom-Seong;Park, Seong-Keun;Choi, Bae-Hoon;Kim, Eun-Tai;Lee, Hee-Jin;Kang, Hyung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • This paper proposes a new collision risk assessment system for pedestrians's safety. Monte Carlo Simulation (MCS) method is a one of the most popular method that rely on repeated random sampling to compute their result, and this method is also proper to get the results when it is unfeasible or impossible to compute an exact result. Nevertheless its advantages, it spends much time to calculate the result of some situation, we apply not only MCS but also Neural Networks in this problem. By Monte carlo method, we make some sample data for input of neural networks and by using this data, neural networks can be trained for computing collision probability of whole area where can be measured by sensors. By using this trained networks, we can estimate the collision probability at each positions and velocities with high speed and low error rate. Computer simulations will be shown the validity of our proposed method.

Artificial Neural Networks for Forecasting of Short-term River Water Quality (단기 하천수질 예측을 위한 신경망모형)

  • Kim, Man-Sik;Han, Jae-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.11-17
    • /
    • 2002
  • The purpose of this study is the prediction of pollutant loads into Seomjin river watershed using neural networks model. The pollutant loads into river watershed depend upon the water quantity of inflow from the upstream as well as the water quality of the inflow into the river. For the estimation of pollutants into river, a neural networks model which has the features of multi-layered structure and parallel multi-connections is used. The used water quality parameters are BOD, COD and SS into Seomjin river. The results of calibration are satisfactory, and proved the availability of a proposed neural networks model to estimate short-term water quality pollutants into river system.

  • PDF

A New Modeling Approach to Fuzzy-Neural Networks Architecture (퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구)

  • Park, Ho-Sung;Oh, Sung-Kwun;Yoon, Yang-Woung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

Design of Fuzzy Relation-based Fuzzy Neural Networks with Multi-Output and Its Optimization (다중 출력을 가지는 퍼지 관계 기반 퍼지뉴럴네트워크 설계 및 최적화)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.832-839
    • /
    • 2009
  • In this paper, we introduce an design of fuzzy relation-based fuzzy neural networks with multi-output. Fuzzy relation-based fuzzy neural networks comprise the network structure generated by dividing the entire input space. The premise part of the fuzzy rules of the network reflects the relation of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions such as constant, linear, and modified quadratic. For the multi-output structure the neurons in the output layer were connected with connection weights. The learning of fuzzy neural networks is realized by adjusting connections of the neurons both in the consequent part of the fuzzy rules and in the output layer, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, learning rate and momentum coefficient are automatically optimized by using real-coded genetic algorithm. Two examples are included to evaluate the performance of the proposed network.

Damage Assessment of Steel Box-girder Bridge using Neural Networks (신경망을 이용한 강박스거더교의 손상평가)

  • Lee, In Won;Oh, Ju Won;Park, Sun Kyu;Kim, Ju Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.79-88
    • /
    • 1999
  • Damages of a steel box girder bridge are detected using neural networks. Damage detection using neural networks has increasing momentum in structural engineering. It is a new effort to overcome the limitations of the conventional analytical approaches and applied to the damage detection of a steel box-girder bridge. Data sets for training neural networks are obtained from the acceleration response of the bridge under moving load. Finite element model is first defined and damages of 5, 10, 15 and 20% are assumed in the model. Not only the trained damages but untrained damages are detected in the assessment stage. The untrained damages can be detected with acceptable errors. Because the number of damaged locations are limited to a few parts, more researches are needed to put this technique into practice.

  • PDF