• Title/Summary/Keyword: Neural stem cell differentiation

Search Result 88, Processing Time 0.033 seconds

Past, Present, and Future of Brain Organoid Technology

  • Koo, Bonsang;Choi, Baekgyu;Park, Hoewon;Yoon, Ki-Jun
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.617-627
    • /
    • 2019
  • Brain organoids are an exciting new technology with the potential to significantly change our understanding of the development and disorders of the human brain. With step-by-step differentiation protocols, three-dimensional neural tissues are self-organized from pluripotent stem cells, and recapitulate the major millstones of human brain development in vitro. Recent studies have shown that brain organoids can mimic the spatiotemporal dynamicity of neurogenesis, the formation of regional neural circuitry, and the integration of glial cells into a neural network. This suggests that brain organoids could serve as a representative model system to study the human brain. In this review, we will overview the development of brain organoid technology, its current progress and applications, and future prospects of this technology.

An Increase in Mesenchymal Stem Cells Expressing Nestin in Bone-Marrow-Derived Primary Cells Stimulates Neurogenic Differentiation in Rat

  • Han, Na Rae;Lee, Hyun;Yun, Jung Im;Kim, Choonghyo;Hwang, Jae Yeon;Park, Kyu Hyun;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin ($Nestin^+$ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that $Nestin^+$ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of $Nestin^+$ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of $Nestin^+$ MSCs in uncultured and cultured BMPCs. The percentage of $Nestin^+$ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of $Nestin^+$ MSCs. The presence of $Nestin^+$ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of $Nestin^+$ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of $Nestin^+$ MSCs in cultured BMPCs.

Inhibition of Proliferation and Neurogenesis of Mouse Subventricular Zone Neural Stem Cells by a Mitochondrial Inhibitor Rotenone (미토콘드리아 억제제 rotenone에 의한 쥐의 뇌실 하 영역 신경 줄기 세포의 증식과 신경 세포로의 분화 억제)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1397-1405
    • /
    • 2018
  • Mitochondria have multiple functions in cells: providing chemical energy, storing cellular $Ca^{2+}$, generating reactive oxygen species, and regulating apoptosis. Through these functions, mitochondria are also involved in the maintenance, proliferation, and differentiation of stem/progenitor cells. In the brain, the subventricular zone (SVZ) is one of the neurogenic regions that contains neural stem cells (NSCs) throughout a lifetime. However, reports on the role of mitochondria in SVZ NSCs are scarce. Here, we show that rotenone, a complex I inhibitor of mitochondria, inhibits the proliferation and differentiation of SVZ NSCs in different ways. In proliferating NSCs, rotenone decreases mitosis as measured through phosphorylated histone H3 detection; moreover, apoptosis is not induced by rotenone at 50 nM. In differentiating NSCs, rotenone blocks neurogenesis and oligodendrogenesis while glial fibrillary acidic protein-positive astrocytes are not affected. Interestingly, in this study there were more cells in the differentiating NSCs treated with rotenone for 4-6 days than in the vehicle control group which was a different effect from the reduced number of cells in the proliferating NSCs. We examined both apoptosis and mitosis and found that rotenone decreased apoptosis as detected by staining cleaved caspase-3 but did not affect mitosis. Our results suggest that functional mitochondria are necessary in both the proliferation and differentiation of SVZ NSCs. Furthermore, mitochondria might be involved in the mitosis and apoptosis that occur during those processes.

Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders

  • Hernandez, Rosa;Jimenez-Luna, Cristina;Perales-Adan, Jesus;Perazzoli, Gloria;Melguizo, Consolacion;Prados, Jose
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.34-44
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.

Differential Expressions of Gap Junction Proteins during Differentiation of Rat Neuronal Stem Cells

  • Yang, Se-Ran;Cho, Sung-Dae;Ahn, Nam-Shik;Jung, Ji-Won;Park, Joon-Suk;Tiep, Nguyen Ba;Park, Ki-Su;Hong, In-Sun;Jo, Eun-Hye;Seo, Min-Seo;Yoon, Byong-Su;Lee, Yong-Soon;Kang, Kyung-Sun
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.11-15
    • /
    • 2003
  • Gap junctional intercellular communication (GJIC) plays a key role during development, process of tissue differentiation, and in maintenance of adult tissue homeostasis. Neural stem cells leading to formation of cell clusters termed 'neurospheres', can differentiate into neurons, oligodendrocytes, and astrocytes. We investigated the expression levels and distribution of connexin43 (Cx43) and connexin32 (Cx32), abundant gap junctional protein in neural cells and in neurospheres isolated from rat fetus embryonic day (ED) 17. During differentiation of neurospheres, expression of Cx43 and 32 were increased time-dependently within 72 h, and then decreased at 7 day in western blot analysis. TPA-induced inhibition of GJIC was confirmed by decreased fluorescence by SL/DT assay, and induced hyperphosphorylation of Cx43 while no changes in Cx32 levels in western blot assay. Our results indicate that GJIC may be a crucial role in the differentiation of neuronal stem cell. And this GJIC can be inhibited by TPA through the hyperphosphorylation of Cx43.

  • PDF

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF

Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells

  • Jang, Hye-Jeong;Park, Hwan Hee;Tran, Thi Thuy Linh;Lee, Hak-Kyo;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1721-1728
    • /
    • 2015
  • Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice

  • Seong, Kyung-Joo;Kim, Hyeong-Jun;Cai, Bangrong;Kook, Min-Suk;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

Kir4.1 is coexpressed with stemness markers in activated astrocytes in the injured brain and a Kir4.1 inhibitor BaCl2 negatively regulates neurosphere formation in culture

  • Kwon, Jae-Kyung;Choi, Dong-Joo;Yang, Haijie;Ko, Dong Wan;Jou, Ilo;Park, Sang Myun;Joe, Eun-Hye
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.565-574
    • /
    • 2021
  • Astrocytes are activated in response to brain damage. Here, we found that expression of Kir4.1, a major potassium channel in astrocytes, is increased in activated astrocytes in the injured brain together with upregulation of the neural stem cell markers, Sox2 and Nestin. Expression of Kir4.1 was also increased together with that of Nestin and Sox2 in neurospheres formed from dissociated P7 mouse brains. Using the Kir4.1 blocker BaCl2 to determine whether Kir4.1 is involved in acquisition of stemness, we found that inhibition of Kir4.1 activity caused a concentration-dependent increase in sphere size and Sox2 levels, but had little effect on Nestin levels. Moreover, induction of differentiation of cultured neural stem cells by withdrawing epidermal growth factor and fibroblast growth factor from the culture medium caused a sharp initial increase in Kir4.1 expression followed by a decrease, whereas Sox2 and Nestin levels continuously decreased. Inhibition of Kir4.1 had no effect on expression levels of Sox2 or Nestin, or the astrocyte and neuron markers glial fibrillary acidic protein and β-tubulin III, respectively. Taken together, these results indicate that Kir4.1 may control gain of stemness but not differentiation of stem cells.