• 제목/요약/키워드: Neural networks modeling

검색결과 390건 처리시간 0.027초

대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계 (Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures)

  • 윤정방;김상범
    • 한국지진공학회논문집
    • /
    • 제3권3호
    • /
    • pp.63-74
    • /
    • 1999
  • 대형구조물의 진동감소를 위한 슬라이딩 모드 퍼지 제어기(Sliding Mode Fuzzy Control SMFC)에 대하여 연구하였다 본 제어기에 사용된 퍼지 추론기의 규칙은 비선형 제어기법의 하나인 슬라이딩 모드 제어기를 기반으로 하여 구성되었다 그결과 제어기의 퍼지성은 제어시스템을 시스템 계수의 불확실성과 구조물에 작용되는 외부하중의 불확실성에 대하여 강인한 성질은 갖게 하였으며 제어 규칙의 비선형성으로 인하여 제어기는 선형제어기에 비하여 보다 효율적인 되었다 복잡한 수학 해석에 기반한 종래의 제어기법에 비하여 퍼지 이론에 기반한 본 제어기법은 제어기의 설계절차가 매우 편리하다는 장점을 갖게 된다. 제안된 제어기법의 검증을 위하여 미국 토목학회 산하 구조제어위원회(ASCE Committee on Structural Control)에서 주도한 벤치마크 문제에 대하여 적용시켜 보았다 본 연구의 제어결과를 다른 연구자들에 의하여 발표된 {{{{ ETA _mixed _2$\infty$ }}, optimal polynomial control neural networks control 슬라이딩 모드 제어의 벤치마크 결과와 비교하였으며 그 결과 제안된 제어기법이 구조물의 진동을 매우 효율적으로 감소시키며 제어기의 설계절차가 쉽고 편리함을 확일 할 수 있었다.

  • PDF

나주지점의 강우-유출 해석을 위한 최적의 SOM 구조 결정 (Determination of the Optimized Structure of Self-Organizing Map for the Rainfall-Runoff Analysis in Naju)

  • 김용구;진영훈;박성천;정천리
    • 한국수자원학회논문집
    • /
    • 제41권10호
    • /
    • pp.995-1007
    • /
    • 2008
  • 인공신경망 이론을 이용하여 강한 비선형성의 경향을 보이고 있는 강우-유출간의 관계를 모형화하기 위한 연구들은 예측뿐만이 아니라 대상자료들의 양상을 분류하여 그 특성을 분석하는 데에도 이용되고 있다. 이와 같은 패턴분류를 위한 SOM(Self-Organizing Map: SOM)의 연구 결과를 검토해보면 SOM 훈련을 위한 지도크기 및 배열의 결정은 SOM 성능에 큰 영향을 미치는 것으로 보고되고 있으나 지도크기 결정시 지도의 종방향 크기와 횡방향 크기를 결정할 수 있는 확정론적인 방법이나 이론식이 없고, 지도배열은 주로 육각형 배열(hexagonal array)을 이용하여 적용하고 있다. 따라서 본 연구에서는 영산강 나주지점을 대상으로 강우-유출관계의 분할특성을 나타내는 지도크기와 배열을 복합적으로 검토하여 나주지점의 강우-유출 해석을 위한 적절한 지도구조를 결정하였다. 그 결과 8개의 패턴으로 구분된 지도크기 20$\times$16의 육각형배열 구조가 나주지점의 강우-유출해석을 위한 적절한 지도구조로 결정되었다.

순환 심층 신경망 모델을 이용한 전용회선 트래픽 예측 (Leased Line Traffic Prediction Using a Recurrent Deep Neural Network Model)

  • 이인규;송미화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권10호
    • /
    • pp.391-398
    • /
    • 2021
  • 전용회선은 데이터 전송에 있어서 연결된 두 지역을 독점적으로 사용하는 구조이기 때문에 안정된 품질수준과 보안성이 확보되어 교환회선의 급격한 증가에도 불구하고 기업 내부에서는 지속적으로 많이 사용하는 회선 방식이다. 하지만 비용이 상대적으로 고가이기 때문에 기업 내 네트워크 운영자의 중요한 역할 중의 하나는 네트워크 전용회선의 자원을 적절히 배치하고 활용하여 최적의 상태를 유지하는 것이 중요한 요소이다. 즉, 비즈니스 서비스 요구 사항을 적절히 지원하기 위해서는 데이터 전송 관점에서 전용회선의 대역폭 자원에 대한 적절한 관리가 필수적이며 전용회선 사용량을 적절히 예측하고 관리하는 것이 핵심 요소가 된다. 이에 본 연구에서는 기업 네트워크에서 사용하는 전용회선의 실제 사용률 데이터를 기반으로 다양한 예측 모형을 적용하고 성능을 평가하였다. 일반적으로 통계적인 방법으로 많이 사용하는 평활화 기법 및 ARIMA 모형과 요즘 많은 연구가 되고 있는 인공신경망에 기반한 딥러닝의 대표적인 모형들을 적용하여 각각의 예측에 대한 성능을 측정하고 비교하였다. 또한, 실험결과에 기초하여 전용회선 자원의 효과적인 운영 관점에서 각 모형이 예측에 대하여 좋은 성능을 내기 위하여 고려해야 할 사항을 제안하였다.

위치 정보 인코딩 기반 ISP 신경망 성능 개선 (Enhancing A Neural-Network-based ISP Model through Positional Encoding)

  • 김대연;김우혁;조성현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.81-86
    • /
    • 2024
  • 영상 신호 프로세서(Image Signal Processor, ISP)는 카메라 센서로부터 획득된 RAW 영상을 사람의 눈에 보기 좋은 sRGB 영상으로 변환한다. RAW 영상은 sRGB 영상에 비해 영상 처리에 도움이 되는 정보를 가지고 있지만 상대적으로 큰 용량으로 인해 주로 sRGB 영상만 저장되고 사용된다. 또한, 실제 카메라의 ISP 과정이 공개되어 있지 않아 그 역과정을 모사하는 것은 매우 어렵다. 이에 sRGB와 RAW 영상의 상호 변환을 위한 카메라 ISP 모델링 연구가 활발히 진행되고 있으며, 최근 기존의 단순한 ISP 신경망 구조를 고도화하고 실제 카메라 ISP의 동작과 유사하게 카메라 파라미터(노출 시간, 감도, 조리개 크기, 초점 거리)를 직접 반영하는 ParamISP[1] 모델이 제안되었다. 하지만 ParamISP[1]를 포함한 기존의 연구는 카메라 ISP를 모델링함에 있어 렌즈로 인해 발생하는 렌즈 쉐이딩(Lens Shading), 광학 수차(Optical Aberration), 렌즈 왜곡(Lens Distortion) 등을 고려하지 않아 복원 성능에 한계가 있다. 본 연구는 ISP 신경망이 렌즈로 인해 발생하는 열화를 보다 잘 다룰 수 있도록 위치 정보 인코딩(Positional Encoding)을 도입한다. 제안하는 위치 정보 인코딩 기법은 영상을 분할하여 패치(Patch) 단위로 학습하는 카메라 ISP 신경망에 적합하며 기존 모델에 비해 영상의 공간적 맥락을 반영할 수 있어 더욱 정교한 영상 복원을 가능하게 한다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

유전 알고리즘이 결합된 MLP와 HMM 합성 분류기를 이용한 근전도 신호 인식 기법 (An EMG Signals Classification using Hybrid HMM and MLP Classifier with Genetic Algorithms)

  • 정정수;권장우;류길수
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.48-57
    • /
    • 2003
  • 본 연구는 hidden Markov model(HMM)과 유전알고리 즘을 갖는 MLP(multilayer perceptron) 합성 분류기를 이용한 근전 신호의 인식에 관한 연구이다. 제안된 기법에서 유전알고리즘은 전역적인 탐색으로 신경회로망의 최적의 초기 연결강도를 선택하는데, 이로 인하여 학습속도 및 인식률이 향상되게 된다. 근전 신호의 동적 특성은 연속 운동 인식처럼 신호의 길이 및 시작점과 끝점이 일정치 않고 시변성이 큰 경우에 반드시 고려되어야 하나, 일반 신경회로망에서는 이의 적용이 용이하지 않다. 따라서, 본 연구에서는 신호의 동적 특성에 대한 적응성을 갖는 HMM과 MLP 신경회로망을 결합시킨 구조를 갖는 인식기를 제안한다. 이러한 구조는 인식기의 입장에서 볼 때 HMM의 신호의 동적 특성에 대한 적응성과, MLP의 정적인 신호에 대한 우수한 분류력이 결합되어 동적인 신호에도 높은 인식율을 갖는 특성을 갖는다.

  • PDF

텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측 (Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques)

  • 윤태욱;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제25권1호
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구 (A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command)

  • 조상영;김민성;양준석;구영목;정양근;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향 (Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction)

  • 김승룡
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.70-78
    • /
    • 2021
  • 2차원 단일 영상에서 3차원 깊이 정보를 복원하는 기술은 다양한 한계 및 산업계에서 활용도가 매우 높은 기술임이 분명하다. 하지만 2차원 영상은 임의의 3차원 정보의 투사의 결과라는 점에서 내재적 깊이 모호성(Depth ambiguity)을 가지고 있고 이를 해결하는 문제는 매우 도전적이다. 이러한 한계점은 최근 인공지능 기술의 발달에 힘입어 2차원 영상과 3차원 깊이 정보간의 대응 관계를 학습하는 알고리즘의 발달로 극복되어 지고 있다. 이러한 3차원 깊이 정보 획득을 위한 인공지능 기술을 학습하기 위해서는 대응 관계를 나타내는 대규모의 학습데이터의 필요성이 절대적인데, 이러한 데이터는 취득 및 가공 과정에서 상당한 노동력을 필요로 하기에 제한적으로 구축이 가능하다. 따라서 최근의 기술 발전 동향은 대규모의 2차원 영상과 메타 데이터를 활용하여 3차원 깊이 정보를 예측하려는 약교사(Weakly-supervised) 인공지능 기술의 발전이 주를 이루고 있다. 본 고에서는 이러한 기술 발전 동향을 장면(Scene) 3차원 복원 기술과 객체(Object) 3차원 복원 기술로 나누어 요약하고 현재의 기술들의 한계점과 향후 나아갈 방향에 대해서 토의한다.

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.