본 논문은 약한 레이블 기반 음향 이벤트 검출을 위한 시간-주파수 영역분할 맵 추출 모델에서 발생하는 희소성 및 수용영역 부족에 관한 문제를 완화 시키기 위해, 확장 게이트 선형 유닛(Dilated Convolution Gated Linear Unit, DCGLU)을 제안한다. 딥러닝 분야에서 음향 이벤트 검출을 위한 영역분할 맵 추출 기반 방법은 잡음 환경에서 좋은 성능을 보여준다. 하지만, 이 방법은 영역분할 맵을 추출하기 위해 특징 맵의 크기를 유지해야 하므로 풀링 연산 없이 모델을 구성하게 된다. 이로 인해 이 방법은 희소성과 수용영역의 부족으로 성능 저하를 보이게 된다. 이런 문제를 완화하기 위해, 본 논문에서는 정보의 흐름을 제어할 수 있는 게이트 선형 유닛과 추가의 파라미터 없이 수용영역을 넓혀 줄 수 있는 확장 합성곱 신경망을 적용하였다. 실험을 위해 사용된 데이터는 URBAN-SED와 자체 제작한 조류 울음소리 데이터이며, 제안하는 DCGLU 모델이 기존 베이스라인 논문들보다 더 좋을 성능을 보였다. 특히, DCGLU 모델이 자연 소리가 섞인 환경인 세 개의 Signal to Noise Ratio(SNR)(20 dB, 10 dB, 0 dB)에서 강인하다는 것을 확인하였다.
집단 따돌림을 청소년 문제로 국한했던 것과는 달리 오늘날 직장 내 집단 따돌림은 커다란 문제로 대두되고 있다. 국제 노동기구(ILO)의 따돌림 관련 유수의 보고와 국내의 경우를 볼 때 직장 내 따돌림 경험 응답 비율이 9.1%('03)에서 30.7%('08)로 증가하고 있다. 이러한 따돌림은 개인적, 사회적으로 커다란 손실을 초래한다. 제안한 알고리즘은 사용자 프로파일을 통해 현재 Mobbing(집단 따돌림)1) 희생자뿐 만 아니라 잠정적인 Mobbing 희생자의 가능성을 파악하여 효율적인 인원관리가 가능하다. 본 논문에서는 Mobbing 현상에 관련된 사용자 프로파일 즉, 7개의 요소(Factor)와 그 하위에 포함된 50개의 속성(Attribute)들을 선정한다. 다음으로 선정한 속성들에 대해 나와 사용자들 사이에 관계가 있으면 ‘1', 관계가 없으면 ‘0'으로 표현한다. 그리고 나와 사용자들간의 유사도 산정을 위해 각 요소안에 포함된 속성들의 합에 유사도 함수를 적용한다. 다음으로 클레멘타인의 인공신경망 알고리즘을 통해 속성들이 포함된 요소가 취할 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing 지수를 산정한다. 마지막으로 online social network 사용자들의 Mobbing 지수를 본 논문에서 설계한 G22) Mobbing 성향 분류 모델(4개의 그룹; Ideal Group of the online social network, Bullies, Aggressive victims, Victims)에 매핑하여 사용자들의 Mobbing 성향을 파악하고 이를 토대로 효율적인 인원관리에 기여할 수 있다.
불법현금융통 적발모형 개발에 앙상블 접근방법을 사용하였다. 불법현금융통은 국내 신용카드사의 손익에 영향을 미치며 최근 국제화되고 있음에도 불구하고 학문적인 접근이 이루어지지 않았다. 부정행위 적발모형(Fraud Detection Model, FDM)은 데이터 불균형 문제로 인하여 좋은 성능을 얻기 어려운데, 다수의 모형을 결합하는 앙상블이 대안으로 제시되어 왔다. 앙상블에 포함된 모형들의 다양성이 보장된다면 단일모형에 비해 더 좋은 성능을 보인다는 점은 이미 인정되고 있으며, 최근 연구 결과는 학습된 모든 기본모형들을 사용하는 것보다 적절한 기본모형들만 선택하여 앙상블에 포함시키는 것이 바람직하다는 것이다. 본 논문에서는 효과적인 불법현금융통 적발을 위하여 축소된 앙상블 기법을 사용하는데, 정확성과 다양성 척도를 사용하여 앙상블에 참여할 기본모형을 선택하는 것이다. 다양성은 앙상블을 구성하는 기본모형들 사이의 불일치 (Disagreement or Ambiguity)를 의미하는데, FDM에 내재된 데이터 불균형문제를 고려하여 두 가지 측면에 중점을 두었다. 첫째, 학습 자료의 추출 과정에서 다양성을 확보하기 위한 소수 범주의 과잉추출 방법과 적절한 훈련 방법에 대해 설명하였다. 둘째, 소수범주에 초점을 맞추어 기존의 다양성 척도를 효과적인 척도로 변형시키고, 전진추가법과 후진소거법의 동적 다양성 계산법을 도입하여 앙상블에 참여할 기본모형을 평가하였다. 실험에 사용된 학습 알고리즘은 신경망, 의사결정수와 로짓 회귀분석이었으며, 동질적 앙상블과 이질적 앙상블을 구성하여 성능평가를 하였다. 실험결과 불법현금융통 적발모형에 있어 축소된 앙상블은 모든 기본모형이 포함된 앙상블과 성능 차이가 없었다. 축소된 앙상블은 앙상블 구성의 복잡성을 감소시키고 구현을 용이하게 한다는 점에서 FDM에서도 유력한 모형 수립 접근방법이 될 수 있음을 보였다.
최근 수문 및 수자원 분야에서 위성영상의 활용성이 높아짐에 따라 관련 전용 위성 개발연구와 연계하여 위성을 활용한 증발산량과 토양수분량 산정 연구의 필요성이 강조되고 있다. 본 연구에서는 이러한 위성을 기반으로 증발산량 및 토양수분량의 국내 연구현황과 그 산정 방법론을 조사하여 현재까지의 연구동향을 파악하고자 하였다. 국내 연구현황을 세부 방법론 별로 살펴본 결과 일반적으로 증발산량의 경우는 Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC)과 같은 에너지수지 기반 모형과 Penman-Monteith (PM) 및 Priestley-Taylor (PT) 산출식을 기반으로 산정되었으며, 토양수분량의 경우 능동형(AMSR-E, AMSR2, MIRAS, SMAP) 및 수동형(ASCAT, SAR)와 같은 마이크로파 센서를 통한 산정이 주를 이루었다. 통계적 측면에서는 증발산량 및 토양수분량 공통적으로 회귀식 및 인공지능을 이용한 산출사례를 찾을 수 있었다. 또한 위성기반 자료들을 이용한 Evaporative Stress Index (ESI), Temperature-Vegetation Dryness Index (TVDI), Soil Moisture Deficit Index (SMDI) 등의 다양한 지표를 산정하여 가뭄 특성파악에 적용한 연구 사례도 다수 있었으며, 지표모형(Land Surface Model, LSM)을 기반으로 하여 위성 다중센서에서 얻을 수 있는 주요 자료들을 활용해 증발산량과 토양수분량의 수문순환인자를 산출하기도 하였다. 본 논문에서는 이렇게 기존 연구사례 조사 및 내용파악 과정을 통해 위성을 활용한 주요 세부 방법론을 비교·검토 제시함으로써 관련 연구분야 기준 참고자료로의 활용 및 향후 위성기반 관련 수문순환 자료 산출 고도화 연구의 초석을 다지고자 한다.
이번 연구는 소아의 인접면 우식을 진단하는데 있어 사용하고 있는 구내방사선 사진에서 심층학습(deep learning) 알고리즘을 활용하여 치아우식을 진단하는 모델의 성능을 평가하고자 하였다. 제1유구치와 제2유구치 사이의 인접면이 포함된 500개의 구내방사선 사진을 대상으로 연구를 시행하였다. 치아우식을 진단하는 모델의 학습에는 Resnet50 기반의 인공신경망 모델을 사용하였다. 평가자료군에서 진단모델의 정확도, 민감도, 특이도를 구하고, ROC 곡선을 얻어 AUC 값을 바탕으로 분류 모델의 성능을 평가하였다. 학습 모델의 정확도는 0.84, 민감도는 0.74, 특이도는 0.94로 나타났으며 AUC는 0.86으로 나타났다. 인공신경망을 기반으로 하는 소아의 구내방사선 사진에서의 인접면 우식의 진단 모델은 비교적 높은 정확도를 보여주었다. 심층학습 모델은 구내방사선 사진상에서 인접면 우식을 진단하는데 있어 향후 치과의사를 보조하는 진단 도구로서 활용될 수 있을 것이다.
본 논문은 서울, 부산, 인천과 같은 대한민국의 주요 도시들을 대상으로 일사량 예측 정확도를 향상하기 위한 방법론을 제안한다. 제안한 방법론은 먼저 GAN, CTGAN, Copula GAN, WGANGP, TVAE 등 다섯 가지 생성 모델을 이용하여 기존 학습 데이터와 유사한 독립 변수들을 생성한다. 다음으로 모델 학습에서의 데이터 편향성을 개선하고자, 생성한 독립 변수들에서 각각 랜덤 포레스트와 심층 신경망을 통해 종속 변숫값을 도출하여 학습 데이터 셋을 구축하고, 이를 기존 학습데이터 셋과 결합하여 예측 모델을 구성한다. 실험 결과, 증강된 데이터 셋으로 학습한 모델들은 기존 데이터 셋으로 학습한 모델들보다 향상된 성능을 나타내었다. 특히 CTGAN은 복잡한 다변량 데이터 관계를 효과적으로 다루는 메커니즘으로 인해 우수한 결과를 도출하였으며, 생성된 데이터는 일사량의 다양한 변화와 실제 변동성과 효과적으로 반영하였다. 제안한 방법론은 고품질의 생성 데이터로 학습 데이터를 증강함으로써, 데이터 부족 현상 문제를 다룰 수 있을 뿐만 아니라 지속 가능한 발전을 위한 태양광 발전 시스템 운영에도 이바지할 수 있을 것으로 기대한다.
부족한 하천유출 관측 데이터는 모델 보정 작업을 어렵게 만들어 모델의 성능 향상을 제한한다. 위성 기반 원격탐사 자료는 수문 관련 데이터의 확보에 적극적으로 활용될 수 있으므로 새로운 대안이 될 수 있다. 최근에는 여러 연구를 통하여 기존의 개념적/물리적 모델보다는 인공지능을 이용한 해법이 더 적절하다는 평가를 받고 있다. 본 연구에서는 다양한 순환 신경망들과 의사결정나무 기반 알고리즘들을 결합한 자료 기반 접근 방식을 제안하였다. 또한 인공지능 학습을 위하여 인공위성 원격탐사 정보의 활용성을 조사하였다. 본 연구에서 위성영상은 MODIS와 SMAP의 자료가 사용된다. 공적으로 공개된 25개 유역의 자료를 사용하여 제안된 접근 방식을 검증하였다. 전통적인 지역화 접근법에서 착안하여 모든 유역의 자료를 통합하여 하나의 자료 기반 모델을 학습하는 전략을 채택하였으며, Leave-one-out cross-validation 지역화 설정을 이용하여 하나의 모델이 다양한 유역의 하천유출을 예측함으로써 제안된 접근 방식의 잠재력을 평가하였다. GRU + Light GBM 모델이 대상 유역에 적합한 모델 조합으로 판명되었으며(25개 미계측 유역 일 하천유량 예측 모형효율계수 평균 0.7187) 하천유출이 매우 작은 시기를 제외하면 우수한 미계측 유역의 하천유출 예측 성능을 보여주었다. 인공위성 원격탐사 정보의 영향력은 최대 10% 정도로 파악되었으며, 위성 정보의 추가 적용이 풍수기 또는 평수기보다는 저수기 또는 갈수기의 하천유출 예측에 더 큰 영향을 미쳤다.
소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.
최근 기후변화로 인해 강도가 높은 태풍의 빈도가 높아짐에 따라 태풍 예측의 중요성이 강조되고 있는 데, 태풍경로예측에 비해 태풍강도예측에 대한 연구는 미비한 상황이다. 이에 본 연구에서는 딥러닝 모델인 Multi-task learning (MTL) 기법을 활용하여 정지궤도기상위성을 활용한 관측자료와 수치예보모델을 융합한 실시간 추정 및 6시간, 12시간 후의 태풍강도예측 모델을 제안하고자 한다. 본 연구에서는 2011년에서 2016년까지 북서태평양에서 발생한 총 142개의 태풍을 대상으로 강도 예측 연구를 시행하였다. 한국 최초의 기상위성인 Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI)를 활용하여 태풍의 관측영상을 추출하였고, National Center of Environmental Prediction (NCEP)에서 제공하는 Climate Forecast System version 2 (CFSv2)를 활용하여 6시간, 12시간 후의 태풍 주변 대기 및 해양 예측변수를 추출하였다. 본 연구에서는 각 입력자료의 활용성을 정량화 하기 위하여, 위성 기반 태풍관측영상만을 활용한 MTL 모델(Scheme 1)과 수치예보모델을 융합적으로 활용한 MTL 모델(Scheme 2)을 구축하고, 각 모델의 훈련 및 검증 성능을 정량적으로 비교하였다. 실시간 강도 추정의 결과 scheme 1과 scheme 2에서 비슷한 성능을 보이는 반면, 6시간, 12시간 후 태풍강도예측의 경우 scheme 2에서 각각 13%, 16% 개선된 결과를 보였다. 태풍 단계별 예측성능에 대한 분석을 시행한 결과, 저강도 태풍일수록 낮은 평균제곱근오차를 보인 반면, 대부분의 강도 단계에서 평균제곱근편차비는 30% 미만의 값을 보이며 유의미한 검증 결과를 보였다. 이에 본 연구에서 제시한 두가지 모델을 기반으로 2014년 발생한 태풍 HALONG의 시계열검증을 시행하였다. 그 결과, scheme 1의 경우 태풍 초기발달단계에서 태풍의 강도를 약 20 kts가량 과대 추정하는 경향을 보이는데, 환경예측자료를 융합한 scheme 2에서는 오차가 약 5 kts가량으로 과대 추정 경향이 줄어들었다. 본 연구에서 제시하는 현재, 6시간, 12시간 후 강도를 동시에 추출하는 MTL 모델은 Single-tasking model 대비 약 300%의 시간 효율을 보이며, 향후 신속한 태풍 예보 정보 추출에 큰 기여를 할 수 있을 것으로 기대된다.
본 연구에서는 기업의 마케팅 프로모션에 따른 반응고객의 구매액 예측을 위한 방법을 제시하고 SVR의 효과적인 학습방법을 제시하였다. 프로모션에 의한 고객의 구매액을 기반으로 고객을 5등급으로 등급화하고 각 등급 내에서 SVR을 적용하여 고객의 구매액을 예측하였다. 본 연구에서 제안하는 예측된 고객의 등급 내에서 고객 구매액을 예측하는 분리데이터 학습법이 프로모션에 반응한 모든 고객을 대상으로 구매액을 예측하는 전체데이터 학습법보다 높은 예측성과를 보여주었다. 일반적으로 세분화된 고객집단을 하나의 집단으로 보고 동일한 마케팅 전략을 제시하나 본 연구를 통해 구매액에 따라 등급화 된 고객의 등급 내에서 다시 고객의 거래 구매액을 예측하여 동일한 집단 내에서도 차별화된 마케팅 전략을 제시할 수 있는 기반을 제시하였다. 즉 동일한 등급에서도 고객 구매액에 따라 고객의 우선순위를 정할 수 있으며, 이는 마케팅 담당자가 프로모션을 제시할 고객을 선정할 때 유용한 정보로 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.