• Title/Summary/Keyword: Neural network training algorithm

Search Result 602, Processing Time 0.026 seconds

Probabilistic Neural Network-Based Damage Assessment for Bridge Structures (확률신경망에 기초한 교량구조물의 손상평가)

  • Cho, Hyo-Nam;Kang, Kyoung-Koo;Lee, Sung-Chil;Hur, Choon-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.169-179
    • /
    • 2002
  • This paper presents an efficient algorithm for the estimation of damage location and severity in structure using Probabilistic Neural Network (PNN). Artificial neural network has been being used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training data for neural network learning and ambiguity in the relation of neural network architecture with convergence of solution. In this paper, PNN is used as a pattern classifier to overcome those problems in the conventional neural network. The basic idea of damage assessment algorithm proposed in this paper is that modal characteristics from a damaged structure are compared with the training patterns which represent the damage in specific element to determine how close it is to training patterns in terms of the probability from PNN. The training pattern that gives a maximum probability implies that the element used in producing the training pattern is considered as a damaged one. The proposed damage assessment algorithm using PNN is applied to a 2-span continuous beam model structure to verify the algorithm.

Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm- (신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용-)

  • 이남호;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks (인공신경망 이론을 이용한 위성영상의 카테고리분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Lim, Jae-Chon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

Learning method of a Neural Network using Genetic Algorithm for 3 Bit Parity Discrimination (패리티 판별을 위한 유전자 알고리즘을 사용한 신경회로망의 학습법)

  • Choi, Jae-Seung;Kim, Chung-Hwa
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.11-18
    • /
    • 2007
  • Back propagation algorithm based on a gradient-decent method has been widely used to the training of a neural network. However, this algorithm have some problems such as dropping the minimum value in a local area according to an initial value and setting the number of units in a hidden layer when training the neural network. Accordingly, to solve the above-mentioned problems, this paper proposes a genetic algorithm using the training method of the neural network. Thus, the improved genetic algorithm using a new crossover and mutation method is proposed to discriminate 3 bit parity. Experiments confirm that the proposed system is effective for training speed after demonstrating for generation gap, the number of units in the hidden layer, and the number of individuals.

The Comparison of Neural Network Learning Paradigms: Backpropagation, Simulated Annealing, Genetic Algorithm, and Tabu Search

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.696-704
    • /
    • 1998
  • Artificial neural networks (ANN) have successfully applied into various areas. But, How to effectively established network is the one of the critical problem. This study will focus on this problem and try to extensively study. Firstly, four different learning algorithms ANNs were constructed. The learning algorithms include backpropagation, simulated annealing, genetic algorithm, and tabu search. The experimental results of the above four different learning algorithms were tested by statistical analysis. The training RMS, training time, and testing RMS were used as the comparison criteria.

  • PDF

Wavelet Neural Network Based Generalized Predictive Control of Chaotic Systems Using EKF Training Algorithm

  • Kim, Kyung-Ju;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2521-2525
    • /
    • 2005
  • In this paper, we presented a predictive control technique, which is based on wavelet neural network (WNN), for the control of chaotic systems whose precise mathematical models are not available. The WNN is motivated by both the multilayer feedforward neural network definition and wavelet decomposition. The wavelet theory improves the convergence of neural network. In order to design predictive controller effectively, the WNN is used as the predictor whose parameters are tuned by error between the output of actual plant and the output of WNN. Also the training method for the finding a good WNN model is the Extended Kalman algorithm which updates network parameters to converge to the reference signal during a few iterations. The benefit of EKF training method is that the WNN model can have better accuracy for the unknown plant. Finally, through computer simulations, we confirmed the performance of the proposed control method.

  • PDF

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Application of Neural Networks For Estimating Evapotranspiration

  • Lee, Nam-Ho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1273-1281
    • /
    • 1993
  • Estimation of daily and seasonal evaportranspiration is essential for water resource planning irrigation feasibility study, and real-time irrigation water management . This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration . A neural network was developed to forecast daily evapotranspiration of the rice crop. It is a three-layer network with input, hidden , and output layers. Back-propagation algorithm with delta learning rule was used to train the neural network. Training neural network wasconducted usign daily actural evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity , and pan evaporation . During the training, neural network parameters were calibrated. The trained network was applied to a set of field data not used in the training . The created response of the neural network was in good agreement with desired values. Evaluating the neural networ performance indicates that neural network may be applied to the estimation of evapotranspiration of the rice crop.

  • PDF

GENIE : A learning intelligent system engine based on neural adaptation and genetic search (GENIE : 신경망 적응과 유전자 탐색 기반의 학습형 지능 시스템 엔진)

  • 장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.27-34
    • /
    • 1996
  • GENIE is a learning-based engine for building intelligent systems. Learning in GENIE proceeds by incrementally modeling its human or technical environment using a neural network and a genetic algorithm. The neural network is used to represent the knowledge for solving a given task and has the ability to grow its structure. The genetic algorithm provides the neural network with training examples by actively exploring the example space of the problem. Integrated into the training examples by actively exploring the example space of the problem. Integrated into the GENIE system architecture, the genetic algorithm and the neural network build a virtually self-teaching autonomous learning system. This paper describes the structure of GENIE and its learning components. The performance is demonstrated on a robot learning problem. We also discuss the lessons learned from experiments with GENIE and point out further possibilities of effectively hybridizing genetic algorithms with neural networks and other softcomputing techniques.

  • PDF

Input variables selection using genetic algorithm in training an artificial neural network (인공신경망 학습단계에서의 Genetic Algorithm을 이용한 입력변수 선정)

  • 이재식;차봉근
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.27-30
    • /
    • 1996
  • Determination of input variables for artificial neural network (ANN) depends entirely on the judgement of a modeller. As the number of input variables increases, the training time for the resulting ANN increases exponentially. Moreover, larger number of input variables does not guarantee better performance. In this research, we employ Genetic Algorithm for selecting proper input variables that yield the best performance in training the resulting ANN.

  • PDF