• 제목/요약/키워드: Neural network image recognition model

검색결과 176건 처리시간 0.03초

딥러닝 기반 암세포 사진 분류 알고리즘 (Deep Learning Algorithm to Identify Cancer Pictures)

  • 서영민;한종기
    • 방송공학회논문지
    • /
    • 제23권5호
    • /
    • pp.669-681
    • /
    • 2018
  • 본 논문에서는 고해상도 자궁경부암 세포사진을 CNN(Convolution Neural Network)을 통해 효과적으로 인식 및 분류하는 방법을 소개한다. 이때 고려되는 세포의 종류는 Ascus, Inflammation, RCC, Normal 로 네 가지가 있다. 본 논문에서는 먼저 기존의 고해상도 이미지를 분류하는 알고리즘을 소개하고, 이 방법을 이용하여 고해상도 세포사진을 분류하는 과정에서 어떤 정보의 손실이 발생하는지 분석한 후, 이를 해결하기 위한 방법을 제시한다. 이를 위해서 본 논문에서 제안하는 학습 모델에서는 dilated convolution을 이용하여 고해상도 사진의 정보의 손실을 최소한으로 줄임과 동시에 학습속도 빠르게 하는 알고리즘을 제시한다. 또한 이미지 전처리 과정으로 임계치를 사용함으로써 암세포를 판단하는데 혼란을 줄 수 있는 부분을 제거함으로써 인식률을 향상시킨다. 본 논문에서 제시되는 실험 결과를 통해, 제안한 알고리즘이 기존 기술보다 높은 인식률을 제공하는 것을 확인할 수 있었다.

ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계 (Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm)

  • 김현기;진용탁;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.173-178
    • /
    • 2014
  • 본 연구에서는 ASM기반 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용한 얼굴인식 분류기와 그것의 설계방법론을 소개한다. 얼굴인식을 위한 이미지는 외부 환경에 쉽게 영향을 받기 때문에, 전처리 단계로 이러한 문제를 해결하기 위해서 ASM을 사용하였다. 특히 사람 얼굴의 특징 추출을 목적으로 널리 이용되고 있다. ASM을 이용해 얼굴영역을 추출 한 뒤 PCA와 LDA를 이용한 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용하여 차원을 축소한다. 전처리 알고리즘을 통한 얼굴데이터는 제안된 다항식 기반 방사형 기저함수 신경회로망의 입력으로 사용된다. 기존의 신경회로망과는 달리 제안된 지능형 패턴 분류기는 강인한 네트워크 특성을 가지며, 예측능력이 우수할 뿐만 아니라 다차원 입출력에 대한 문제도 해결했다. 분류기의 중요한 필수 설계 파라미터(행의 고유벡터의 수, 열의 고유벡터의 수, 클러스터의 수, 퍼지화 계수)는 ABC알고리즘에 의해 최적화 되어진다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다.

Spam Image Detection Model based on Deep Learning for Improving Spam Filter

  • Seong-Guk Nam;Dong-Gun Lee;Yeong-Seok Seo
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.289-301
    • /
    • 2023
  • Due to the development and dissemination of modern technology, anyone can easily communicate using services such as social network service (SNS) through a personal computer (PC) or smartphone. The development of these technologies has caused many beneficial effects. At the same time, bad effects also occurred, one of which was the spam problem. Spam refers to unwanted or rejected information received by unspecified users. The continuous exposure of such information to service users creates inconvenience in the user's use of the service, and if filtering is not performed correctly, the quality of service deteriorates. Recently, spammers are creating more malicious spam by distorting the image of spam text so that optical character recognition (OCR)-based spam filters cannot easily detect it. Fortunately, the level of transformation of image spam circulated on social media is not serious yet. However, in the mail system, spammers (the person who sends spam) showed various modifications to the spam image for neutralizing OCR, and therefore, the same situation can happen with spam images on social media. Spammers have been shown to interfere with OCR reading through geometric transformations such as image distortion, noise addition, and blurring. Various techniques have been studied to filter image spam, but at the same time, methods of interfering with image spam identification using obfuscated images are also continuously developing. In this paper, we propose a deep learning-based spam image detection model to improve the existing OCR-based spam image detection performance and compensate for vulnerabilities. The proposed model extracts text features and image features from the image using four sub-models. First, the OCR-based text model extracts the text-related features, whether the image contains spam words, and the word embedding vector from the input image. Then, the convolution neural network-based image model extracts image obfuscation and image feature vectors from the input image. The extracted feature is determined whether it is a spam image by the final spam image classifier. As a result of evaluating the F1-score of the proposed model, the performance was about 14 points higher than the OCR-based spam image detection performance.

Invader Detection System Using the Morphological Filtering and Difference Images Based on the Max-Valued Edge Detection Algorithm

  • Lee, Jae-Hyun;Kim, Sung-Shin;Kim, Jung-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.645-661
    • /
    • 2012
  • Recently, pirates are infesting on the sea and they have been hijacking the several vessels for example Samho Dream and Samho Jewelry of Korea. One of the items to reduce the risk is to adopt the invader detection system. If the pirates break in to the ship, the detection system can monitor the pirates and then call the security alarm. The crew can gain time to hide to the safe room and the report can be automatically sent to the control room to cope with the situation. For the invader detection, an unmanned observation system was proposed using the image detection algorithm that extracts the invader image from the recording image. To detect the motion area, the difference value was calculated between the current image and the prior image of the invader, and the 'AND' operator was used in calculated image and edge line. The image noise was reduced based on the morphology operation and then the image was transformed into morphological information. Finally, a neural network model was applied to recognize the invader. In the experimental results, it was confirmed that the proposed approach can improve the performance of the recognition in the invader monitoring system.

Wavelet과 신경망을 이용한 내용기반 얼굴 검색 시스템 (Content-based Face Retrieval System using Wavelet and Neural Network)

  • 강영미;정성환
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권3호
    • /
    • pp.265-274
    • /
    • 2001
  • 본 논문에서는 얼굴의 특징 영역에 근거하여 얼굴을 검색할 수 있는 내용기반의 얼굴 검색 시스템을 제안한다. 질의를 위해 이름이나 주민등록번호와 같은 키워드를 사용하는 대신에, 제안한 시스템은 시각적 질의로서 얼굴 영상을 사용한다. 이를 위해, 얼굴 구성 요소를 포함하는 특징 영역을 HSl 칼라 모델이 제공하는 칼라 정보와 Wavelet 변환이 제공하는 에지 정보를 이용하여 추출한 후, 신경망을 통하여 분류ㆍ검색한다. 제안한 검색 시스템은 Oracle DBMS를 사용하여 클라이언트/서버 환경으로 구축되었다. 150개의 다양한 얼굴 영상으로 실험한 결과, 약 88.3%의 검색율을 보였다.

  • PDF

합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 아토피피부염 중증도 진단 모델 개발 (Development of Intelligent Severity of Atopic Dermatitis Diagnosis Model using Convolutional Neural Network)

  • 윤재웅;전재헌;방철환;박영민;김영주;오성민;정준호;이석준;이지현
    • 경영과정보연구
    • /
    • 제36권4호
    • /
    • pp.33-51
    • /
    • 2017
  • 제4차 산업혁명의 등장과 경제성장으로 인한 '국민 삶의 질 향상' 요구 증대로 인해 의료서비스의 질과 의료비용에 대한 국민들의 요구수준이 향상되고 있으며, 이로 인해 인공지능이 의료현장에 도입되고 있다. 하지만 인공지능이 의료분야에 활용된 사례를 살펴보면 '삶의 질'에 직접적인 영향을 끼치는 만성피부질환에 활용된 사례는 부족한 실정이며, 만성피부질환 중 대표적 질병인 아토피피부염은 정성적 진단 방법으로 인해 진단의 객관성을 확보할 수 없다는 한계가 존재한다. 본 연구에서는 아토피피부염의 객관적 중증도 평가 방법을 마련하여 아토피피부염 환자의 삶의 질을 향상시키고자 다음과 같은 연구를 수행하였다. 첫째, 가톨릭대학교 의과대학 성모병원의 데이터베이스로부터 아토피피부염 환자의 이미지 데이터를 수집했으며, 수집된 이미지 데이터에 대한 정제 및 라벨링 작업을 수행하여 모델 학습과 검증에 적합한 데이터를 확보했다. 둘째, 지능형 아토피피부염 중증도 진단 모형에 적합한 이미지 인식 알고리즘을 파악하기 위해 다양한 CNN 알고리즘들을 병변별 학습용 데이터로 학습시키고, 검증용 데이터를 활용하여 해당 모델의 이미지 인식 정확도를 측정했다. 실증분석 결과 홍반(Erythema)의 경우 'ResNet V1 101', 긁은 정도(Excoriation)의 경우 'ResNet V2 50'이 90% 이상의 정확도를 기록하였으며, 태선화(Lichenification)의 경우 학습용 데이터 부족의 한계로 인해 두 병변보다 낮은 89%의 정확도를 보였다. 해당 결과를 통해 이미지 인식 알고리즘이 단순한 사물 인식 분야뿐만 아니라 전문적 지식이 요구되는 분야에도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 아토피피부염 환자의 이미지 데이터를 활용했다는 측면에서 실제 임상환경에서 활용성이 높을 것으로 사료된다.

  • PDF

X-ray 이물검출기의 이물 검출 향상을 위한 딥러닝 방법 (Deep Learning Method for Improving Contamination Dectection of Xoray Inspection System)

  • 임병휘;정승수;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.460-462
    • /
    • 2021
  • 식품은 기본적으로 영양성과 안전성을 반드시 갖추어야 한다. 최근에 식품의 안정성이 의심이 되는 안산의 한 유치원에서 식중독성 유증상자가 다수 발생하였다. 그래서 식품의 안전성은 더욱 요구되는 사항이다. 본 논문에서는 식품의 안전성을 확보하기 위한 이물검출기의 딥러닝모델을 통해 검출율을 향상시키는 방법을 제안한다. 제안방법으로는 CNN(convolution neural network), Faster R-CNN(region convolution neural network)의 네트워크를 통해 학습하고 정상과 이물제품의 영상을 테스트 한다. 딥러닝 모델을 통해 테스트한 결과 기존 이물검출기의 알고리즘에 Faster R-CNN을 병행한 방법이 다른 방법보다 검출율이 좋은 성능을 보였다.

  • PDF

Data Mining for Detection of Diabetic Retinopathy

  • Moskowitz, Samuel E.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.372-375
    • /
    • 2003
  • The incidence of blindness resulting from diabetic retinopathy has significantly increased despite the intervention of insulin to control diabetes mellitus. Early signs are microaneurysms, exudates, intraretinal hemorrhages, cotton wool patches, microvascular abnormalities, and venous beading. Advanced stages include neovascularization, fibrous formations, preretinal and vitreous microhemorrhages, and retinal detachment. Microaneurysm count is important because it is an indicator of retinopathy progression. The purpose of this paper is to apply data mining to detect diabetic retinopathy patterns in routine fundus fluorescein angiography. Early symptoms are of principal interest and therefore the emphasis is on detecting microaneurysms rather than vessel tortuosity. The analysis does not involve image-recognition algorithms. Instead, mathematical filtering isolates microaneurysms, microhemorrhages, and exudates as objects of disconnected sets. A neural network is trained on their distribution to return fractal dimension. Hausdorff and box counting dimensions grade progression of the disease. The field is acquired on fluorescein angiography with resolution superior to color ophthalmoscopy, or on patterns produced by physical or mathematical simulations that model viscous fingering of water with additives percolated through porous media. A mathematical filter and neural network perform the screening process thereby eliminating the time consuming operation of determining fractal set dimension in every case.

  • PDF

A proposal of neuron computer for tracking motion of objects

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.496-496
    • /
    • 2000
  • We propose a neuron computer for tracking motion of particles in multi-dimensional space. The neuron computer is constructed of neural networks and their connections, which is a simplified model of the brain. The neuron computer is assemblage of neural networks, it includes a control unit, and the actions of the unit are represented by instructions. We designed a neuron computer to recognize and predict motion of particles. The recognition unit is constructed of neuron-array, encoder, and control part. The neuron-array is a model of the retina, and particles crease an image on the array, where the image is binary. The encoder picks one particle from the array, and translates the particle's location to Cartesian coordinates, which is scaled in [0, 1] intervals. Next, the encoder picks another particle, and does same process. The ordering and reduction of complex processes are executed by instructions. The instructions are held in the control part. The prediction unit is constructed of a multi-layer neural network and a feedback loop, where real time learning is executed. The particles' future locations are forecasted by coordinate values. The neuron computer can chase maximum 100 particles that take evasions.

  • PDF

컨벌루션 신경망과 변종데이터를 이용한 시계열 패턴 인식 (Convolutional Neural Network and Data Mutation for Time Series Pattern Recognition)

  • 안명호;류미현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.727-730
    • /
    • 2016
  • TSC(Time Series Classification)은 시계열데이터를 패턴에 따라 분류하는 것으로, 시계열이 매우 흔한 데이터형태이고, 또한 활용도가 높기 때문에 오랜 시간동안 Data Mining 과 Machine Learning 분야의 주요한 이슈였다. 전통적인 방법에서는 Distance와 Dictionary 기반의 방법들을 많이 활용하였으나, Time Scale과 Random Noise의 문제로 인해 분류의 정확도가 제한되었다. 본 논문에서는 Deep Learning의 CNN(Convolutional Neural Network)과 변종데이터(Data Mutation)을 이용해 정확도를 향상시킨 방법을 제시한다. CNN은 이미지분야에서 이미 검증된 신경망 모델로써 시계열데이터의 특성을 나타내는 Feature를 인식하는데 효과적으로 활용할 수 있고, 변종데이터는 하나의 데이터를 다양한 방식으로 변종을 만들어 CNN이 특정 패턴의 가능한 변형에 대해서도 학습할 수 있도록 데이터를 제공한다. 제시한 방식은 기존의 방식보다 우수한 정확도를 보여준다.

  • PDF