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Abstract - The incidence of blindness resulting from
diabetic retinopathy has significantly increased despite the
intervention of insulin to control diabetes mellitus. Early
signs are microaneurysms, exudates, intraretinal
hemorrhages, cotton wool patches, microvascular
abnormalities, and venous beading. Advanced stages
include neovascularization, fibrous formations, preretinal
and vitreous microhemorrhages, and retinal detachment.
Microaneurysm count is important because it is an
indicator of retinopathy progression. The purpose of this
paper is to apply data mining to detect diabetic
retinopathy patterns in routine fundus fluorescein
angiography. Early symptoms are of principal interest
and therefore the emphasis is on detecting
microaneurysms rather than vessel tortuosity. The
analysis does not involve image-recognition algorithms.
Instead, mathematical filtering isolates microaneurysms,
microhemorrhages, and exudates as objects of
disconnected sets. A neural network is trained on their
distribution to return fractal dimension. Hausdorff and
box counting dimensions grade progression of the disease.
The field is acquired on fluorescein angiography with
resolution superior to color ophthalmoscopy, or on
patterns produced by physical or mathematical
simulations that model viscous fingering of water with
additives percolated through porous media. A
mathematical filter and neural network perform the
screening process thereby eliminating the time consuming
operation of determining fractal set dimension in every
case.

I. INTRODUCTION

In terms of human suffering and healthcare costs, diabetic
retinopathy is one of the most important ocular consequences
of diabetes. Early signs are microaneurysms, exudates,
intraretinal hemorrhages, cotton wool patches, microvascular
abnormalities, and venous beading. Advanced stages are
characterized as proliferative retinopathy. These symptoms
consist of neovascularization, fibrous formations, preretinal
and vitreous microhemorrhages, and retinal detachment [1].

Microaneurysm count is an indicator of retinopathy
progression [2,3.4]. The deeper microaneurysms are detected

on fluorescein angiography rather than ophthalmoscopy

because of intraretinal edema  obscuration [1].
Ophthalmoscopy can take advantage of color differentiation,
but the resolution is not adequate to discern pathological
lesions of micrometer dimension that appear in early stages of
diabetic retinopathy. Another measure is the number of cotton
wool patches. Their presence implies further risk to
proliferative retinopathy [5]. Fluorescein angiography is
therefore the means of choice for early detection of
microaneurysms and exudates. Being invasive, it is used for
selective screening of patients with diabetes mellitus. The
purpose of this paper is to apply data mining to detect diabetic
retinopathy. Knowledge discovery by machine learning from
databases of patterns acquired in routine fundus fluorescein
angiography is addressed.

Microaneurysms are intraretinal lesions of linear dimension
ranging from 10 pm to 100 pm, spherical or ovoid in shape.
They are almost exclusively located on the venous side of the
capillary network, and isolated from blood vessels. The latter
property distinguishes them from hard exudates or lipid

deposits.

Figure 1. Microaneurysms in diabetes mellitus, adapted from
(6]

Complex patterns of blood vessels, microaneurysms,
exudates, intraretinal hemorrhages, cotton wool patches,

microvascular abnormalities, and venous beading are depicted
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n Figure 1. Fluorescein angiography shows microaneurysms
as hyperfluorescent spots in areas where there is no or little
capillary perfusion. They are usually red in color and
~aerefore appear black in red-free photography [7].

Some capillaries become very permeable, so that serum
-roteins, fluid, and electrolytes can escape, and dye may leak
nto the retina. Fluorescein angiography can also reveal
-etinal ischemia related to membrane thinning, nerve fiber
258, and indirect pigment changes as whitened areas.

Images taken on angiography are mathematically filtered to
separate microaneurysms. The filter is theoretically based on
-ae distinction between connected and disconnected sets.
Jiscrete sets are given by exudates, microaneurysms, and
-aicrohemorrhages. Normal blood vessels, neovascularization

and dilated vessels form the connected sets.

II. FILTERING

Filtering isolates microaneurysms, microhemorrhages, and
exudates as objects of disconnected sets. The image plane is
scanned [8]. Sets of Euclidean space E = R” are examined for
connectivity along scan lines [9]. The common definition of
connectivity 1S modified. This concept leads to rules for
constructing an algorithm, which are now discussed.

Set M is connected if and only if for every pair of non-void

subsets Uand Vsuchthat UL V=M

U nhonV )0 (la)
|M} = sup {|x - y: x,y € M} > 100 um (1b)

where the super-bar denotes closure. Hence, to be connected
i* is necessary, but not sufficient, for the set to be connected
i the mathematical sense. Sufficiency is reached when the
dimension exceeds that of the largest microaneurysm.

{f the non-void sets U and V are separated

U ANuUnV)=0. )

(_onsider sets U/ and ¥, both are open or both are closed, then
the sets U — V and V' — U are separated. The boundary of set U

1+ defined as
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bd(U)=U n(E-U)" ©)

Several properties are relevant. Suppose U is connected and
UnV#@Qaswellas U—V#@, then Unbd (V)= @. Points
on the boundary are shared. If the set /¥ is connected, and W
c U w ¥, and the sets U and V are separated, then W < U or
W c V. Consider connected sets U and V. Then the set U V
is connected. Often it is convenient to collect a family of
connected and overlapping sets {U;}, N U= @, then U, U
is connected. The closure of a connected set is connected, that
is, if Uc V< U and U is connected, then V is connected, as
well. If W is a connected subset of connected space E and E —
W=Uwu V¥V, Uand V are separated, then the sets W U U and
W U V are connected. The union of two boundary sets in the
space of real numbers, all rational numbers and all irrational
numbers, is not a boundary set. On the other hand, the union
of a boundary set with a closed boundary set is indeed a
boundary set.

Another useful definition is the set component of point p

C)=uw,U, €]

where p € U, are connected sets, VA. It is the union of a
family of connected sets that contains the same point. Hence,
every component is a connected set that is maximal.
Moreover, it is closed, for let C be a component, then C is
connected, but C is maximal, therefore C = C—. Obviously,
two distinct components must be separated. Suppose U is a
connected subset of E, and C a component of E — U, then E —
C is connected. The Cartesian product of two connected
spaces is connected. What is then concluded for connected
sets of R can be extended to those within the image plane R”.
A set is totally disconnected if C (p) = {p}. This is a
mathematical idealization of a cluster containing only isolated

microaneurysms.

1II. FRACTAL DIMENSION
The progression of the disease is graded by dimension of
fractals that remain after filtering. Fractal analysis was used

for vascular images [10].



Suppose {U;} is a countable or finite collection of non-
empty subsets of R" with diameter of most J that covers F,
thatis Fc W U, 0 < |U| < 6, theniitis a &coverof F. Let F

R"and real number s > 0, define

H’s(F) = inf { Z; |UJ": {U;}is a &cover of F}. 4

Hence, for a given & the smallest summation of different
diameters raised to the s-power must be found.

The s-dimensional Hausdorff measure of F'is

H (F) = lim 5, o H’5 (F). ©

The limit exists for any subset of R".

An outline of the algorithm is as follows: A collection of
subsets with |Uj| < & is selected and fractal F is covered. All
diameters are raised to the s-power and then summed. Next,
several other arrangements are made and for each placement
the procedure is followed again. The smallest summation is
H°s (F). In general, the infs depends on the distribution and
size of microaneurysms and exudates within the retina.
Smaller values of § are then selected and the entire process
repeated. Examining the set of all minima as 6 — 0, inf s >
H°® (F). The parameter s remains unspecified.

Some useful properties are H' (@) =0, K () <H* (J) for I c
J, and H® (U; F)) = £ ; H (F)) provided {F;}is a countable
collection of disjoint Borel sets. The n-dimensional Hausdorff
measure for subsets of R" is equivalent to the Lebesgue
measure within a scaling factor. Moreover, the Hausdorff
measure is scaled according to the rule H® (x F) = x* H' (F)
where k¥ F = {xx: x € F}. Proofs can be found in [11].

It is convenient to envisage this measure in terms of what is
needed to determine size. Suppose F is a continuously
differentiable 2-dimensional surface in R®. The 3-dimensional
Hausdorff measure is zero because closed balls cannot assess
its extent. The 1-dimensional Hausdorff measure is infinite
since the figure contains that many lines. For s = 0, the

measure is also infinite implying the number of points that are

required. Although indefinite, the 2-dimensional measure is
finite and non-zero.

The Hausdorff dimension of F is defined as

dimg F=inf{s: H'(F)=0} =sup { s: H' (F)=}.(7)

At the value of s* = dimy F, either 0 < H' (F) < o, and the
Borel set is then an s-set, H (F) = 0 or H’ (F) = .

Suppose F c G, then dimy F < dimyg G. Dimension of a
mapping dimy f (F) = dimy F, provided f is a bi-Lipschitz
transformation, a |x ~y| < [f(x) - f ()| < b |x —y| with x,y € F,
0<ac<h<ow, and f F — R representing a coordinate

translation or rotation in R", or an affinity. In addition

dimy U, F; = sup {dimy F}}. (8)

Thus, if F is countable or finite, dimy F = 0.

A set Uis closed if U~ < U and dense provided U = E. If
U is the countable set of rational numbers, dimy U = 0. When
its closure is considered, dimy U = 1. The fractal F < R"
and is open, the set has expanse in the entire space therefore
the dimy F = n. In general, for a continuously differentiable
m-dimensional manifold, dimy F = m.

Obviously, the definition is difficult to implement in
practice for irregular shapes and therefore other methods are
needed. One such approach is called box counting although in
this application closed balls are employed. A collection of
closed balls is selected with diameter at most J. Fractal F is
covered. The number of balls needed to cover is counted.
Other collections whose diameters do not exceed J are
selected. For each collection the number of closed balls is
found. Given &, the smallest number N5 (F) is determined.
With monotonically decreasing values of 6, more and more
irregularities are included as the trial is repeated.

It is possible to graph log Ns (F) versus log 8 For
sufficiently small &, the plot appears as a straight line
provided a power law governs the relationship. Then the slope

is equated to
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dimg F = lim 5., ¢ log Ns(F)/ - log 6. 9

There are lower and upper estimates depending on the
nzture of covering. If [F] < oo, F < R", and N; (F) is the
sriallest number of sets of diameter at most & that cover F,
Idimg F = llim 5 _, o log Ns(F)/ - log Jis the lower and udimg
F=ulim 5., o log Ns(F)/ - log & the upper limit, noting that
Idimg F < udimg F. When Idimg F = udimg F, then dimg F =
lim 5,0 log Ns(F)/-1log &, [11].

IV. NEURAL NETWORK

The neural network is trained on disconnected sets
recursively generated from a mathematical or from a physical
rodel of viscous fingering in which water with additives is
percolated through porous media. As sources of data, these
simulations have distinct advantages. Experimental design
¢an be controlled to reveal pathological specificity and a data
warehouse can be filled with unlimited number of images,
whereas relatively few archival angiograms exist free of
of the fuzzy

computational procedure is fractal Hausdorff and box

c¢o>morbid  complexities. The output
¢ounting dimensions, a measure of disease progression and

therefore grade.

V. CONCLUSIONS
A neural network is trained on the distribution of
microaneurysms to return fractal dimension. Hausdorff and
box counting dimensions grade progression of the disease.
The field is acquired on fluorescein angiography with
rzsolution superior to color ophthalmoscopy, or on patterns
produced by physical or mathematical simulations. A
mathematical filter and neural network perform the screening

rrocess thereby eliminating the time consuming operation of

determining fractal set dimension in every case.
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