• Title/Summary/Keyword: Neural network expert system

Search Result 149, Processing Time 0.042 seconds

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

Development of Intellingent Deburring System Based on Industial Robot (산업용로봇을 이용하는 지능 버 제거 시스템 개발에 관한 연구)

  • Shin, Sang-Un;Choe, Gyu-Jong;Ahn, Du-Seong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • This study presents intelligent deburring system which can transfer the exper's skill to deburring robot through neural network. The expert's skill is expressed as associate mapping between the characteristics of the burr and human expert's action. Under the fundamental idea that the state of the deburring process can be extracted via the visual sense of the human, we employ vision system for the perception and identification of the changing burr. From the demonstration of human experts, force data are measured and fitted impedance model. Finally the characteristics of the burr and coressponding force are associated by the neural network which is trained through many demonstrations. The proposed method is verified in the deburring process of welding burr.

  • PDF

A fault diagnostic system for a chemical process using artificial neural network (인공 신경 회로망을 이용한 화학공정의 이상진단 시스템)

  • 최병민;윤여홍;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.131-134
    • /
    • 1990
  • A back-propagation neural network based system for a fault diagnosis of a chemical process is developed. Training data are acquired from FCD(Fault-Consequence Digraph) model. To improve the resolution of a diagnosis, the system is decomposed into 6 subsystems and the training data are composed of 0, 1 and intermediate values. The feasibility of this approach is tested through case studies in a real plant, a naphtha furnace, which has been used to develop a knowledge based expert system, OASYS (Operation Aiding expert SYStem).

  • PDF

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

Compressive strength estimation of concrete containing zeolite and diatomite: An expert system implementation

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • In this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days' compressive strength experiments with 63 specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive strength of concrete containing zeolite and diatomite.

Expert System for Fault Diagnosis of Transformer

  • Kim, Jae-Chul;Jeon, Hee-Jong;Kong, Seong-Gon;Yoon, Yong-Han;Choi, Do-Hyuk;Jeon, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 1997
  • This paper presents hybrid expert system for diagnosis of electric power transformer faults. The expert system diagnose and detect faults in oil-filled power transformers based on dissolved gas analysis. As the preprocessing stage, fuzzy information theory is used to manage the uncertainty in transformer fault diagnosis using dissolved gas analysis. The Kohonen neural network takes the interim results by applying fuzzy informations theory as inputs, and performs the transformer fault diagnosis. The Proposed system tested gas records of power transformers from Korea Electric Power Corporation to verify the diagnosis performance of transformer faults.

  • PDF

A Study of Building B2B EC Business Model for Shipping Industry Using Expert System

  • Yu, Song-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.457-463
    • /
    • 2005
  • The use of the internet to facilitate commerce among companies promises vast benefits. Lots of e-marketplaces are building for several industries such as chemistry, airplane, and automobile industries. This study proposed new B2B EC business model for the shipping industry which concerns relatively massive fixed assets to be fully utilized. To be successful the proposed model gives participants to support useful information. To do this the expert system is constructed as the hybrid prediction system of neural network (NN) and memory based reasoning (MBR) with self-organizing map (SOM) and knowledge augmentaton technique using qualitative reasoning (QR). The expert system supports participants useful information coping with dynamic market environment. with this transportation companies are induced to participate in the proposed e-marketplace and helped for exchanges easily. Also participants would utilize their assets fully through B2B exchanges.

  • PDF

A Study on Building B2B EC Business Model for The Shipping Industry Using Expert System

  • Yu Song-Jin
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.349-355
    • /
    • 2005
  • The use of the internet to facilitate commerce among companies promises vast benefits. Lots of e-marketplaces are building for several industries such as chemistry, airplane, and automobile industries. This study provides the new B2B EC business model for the shipping industry which concerns relatively massive fixed assets to be fully utilized. To be successful the proposed model gives participants useful information. To do this the expert system is constructed with the hybrid prediction system of neural network (NN) and memory based reasoning (MBR) with self-organizing map (SOM) and knowledge augmentation technique using qualitative reasoning (QR). The expert system supports participants useful information coping with dynamic market environment. with this shipping companies are induced to participate in the proposed e-marketplace and helped for exchanges easily. Also participants would utilize their assets fully through B2B exchanges.

A Development of Cyber Credit Decision Support System for Banking Facilities Using Fuzzy-expert Network (퍼지전문가회로망을 이용한 금융기관의 사이버 기업여신결정 지원시스템의 개발)

  • Kwon Hyuk-Dae
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • This paper is to develop the prototype of a decision making for loan granting system at banks and to evaluate the effectiveness of it. The prototype is called at FENET-LG in this paper. The decision to grant a loan is an unstructured and vagueness task because it is required a tremendous amount of data and many complex relationships among them. Evaluating these many data and relationships is a difficult task even for most experienced decision maker of bank. Therefore, where complex judgement is required, the decision maker of bank may benefit from the use of fuzzy expert network to support the evaluation of ability to pay back. Given the characteristics of decision maker of banking facilities judgement task about ability to pay back, the prototype system named FENET-LG is constructed by integration of fuzzy expert system and neural network. The FENET-LG takes advantage of both the deductive approach of fuzzy expert system and the inductive approach of a neural network to provide a decision aid designed to support and facilitate the process of conducting a judgement of ability to pay back.

  • PDF

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF