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~ ABSTRACT

This paper presents hybrid expert system for diagnosis of electric power transformer faults. The expert system di-

agnose and detect faults in oil-filled power transformers based on dissolved gas analysis. As the preprocessing

stage, fuzzy information theory is used to manage the uncertainty in transformer fault diagnosis using dissolved gas

analysis. The Kohonen neural network takes the interim results by applying fuzzy information theory as inputs,

and performs the transformer fault diagnosis. The proposed system tested gas records of power transformers from

Korea Electric Power Corporation to verify the diagnosis performance of transformer faults.

Keywords: Expert system, Transformer fault diagnosis, Dissolved gas analysis, Fuzzy information theory,

Kohonen neural network.

1. introduction

Electric power transformer is a major apparatus in
power systems, so its correct functioning is vital to sys-
tem operations. In order to minimize system outages,
many devices have evolved to monitor the serviceabil-
ity of power transformers. Such devices respond only
to severe power failures that require immediate re-
moval of the transformer from service, which means
electric power outage is inevitable. Therefore, diag-
nostic techniques for incipient fault detection is im-
portant to avoid electrical power outage.

A transformer is subject to two types of stresses,
electrical and thermal. The insulating materials within

the transformer can be broken down due to the stress
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yielding gases. Overheating, corona(partial discharge),
and arcing(full discharge) are three primary causes of
fault related gases. Principally, the fault related gases
are hydrogen(H;), carbon monoxide(CO), carbon di-
oxide(CO,), methane(CH,), acetylene(C;H»), ethylene
(C,H,), and ethane(C,He). The dissolved gas analysis
(DGA) has received worldwide recognition as an ef-
fective method for the detection of incipient faults.
Many diagnostic criteria have been developed for the
interpretation of the dissolved gases.{1-3] These methods
would find the relationship between the gases and the
fault conditions. However, criteria tends to vary de-
pending on the utilities. Each method has limitations
and none of them has a firm mathematical descrip-
tion, which means the diagnosis of transformer fault
is still in the heuristic stage.

For this reason, intelligent programming is a suit-
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able approach in such diagnostic problems. It can con-
sistently diagnose incipient fault conditions and pro-
vides further insight for experts in some cases. Expert
systems and neural networks have been used practi-
cally in transformer fault diagnosis.[4-7] Expert sys-
tem derives decision rules from the previous experi-
ence while the fuzzy approach represents the decision
rules by using vague and ambiguous quantities. Neural
network method has also been used for this purpose
because the relationships between the fault types and
dissolved gases can be recognized by neural network
through training process.

In this paper, a hybrid expert system is proposed
for transformer fault diagnosis based on the interpret-
ation of DGA. The hybrid expert system incorporates
fuzzy algorithm embedded Kohonen neural network
(KNN) approach. To demonstrate the performance of
the proposed system, thousands of previous of power
transformer gas records from the Korea Electric Power
Corporation(KEPCO) are tested. More appropriate
fault types and fault severity can support the main-
tenance personnels to increase the performance of

transformer fault diagnosis.
Il. Dissolved Gas Analysis

Fault gases in power transformers are generally pro-
duced due to degradation of oil, cellulose, paper, and
other insulating materials. Theoretically, if an incipi-
ent or active fault is present, the individual dissolved
gas concentration, total combustible gas(TCG), and cel-
lulose degradation are all significantly increased. TCG
is a mixture of the following gases;H,, CHs, C:H>,
CyHy4, C;Hg, CO.

Different patterns of gases are generated due to dif-
ferent intensities of energy dissipated by various fa-
ults. Totally or partially dissolved into insulation oil,
the gases present in an oil sample make it possible to
determine the nature of fault by the gas types and
their amount. Therefore, the efforts of many resear-

chers have been made to create simplified diagnosis

criteria such as the gas ratio method and the key gas
method which in essence are based on this variations

in gassing characteristics.

2.1 Gas Ratio Method[ 1]

Dornenberg, Rogers, and 1EC are the most com-
monly used gas ratio methods. They employ the re-
lationships between gas contents. The key gas ppm
values are used in these methods to generate the
ratios between them. The ranges of the ratio are as-
signed to different codes which determine the fault
types. Coding is based on experience and is always
under modification. However, gas ratio methods are
limited in discerning problems when more than one
type of fault occurs simultaneously. In addition, for
some cases there is no diagnosis for a code as there
are more possible combinations of the code than
there are for the number of diagnosis. Table 1 dis-
plays the gas ratio method as proposed by IEC.

Table 1. Criteria of IEC

Range of gas ratio (volume/volume) |C;H,/C.H, [CH,/H.{C,H,/C;Hs
<0l 0 1 0
0.1~10 1 0 0
1.0~3.0 1 2 1 |
>30 2 2 2
Case | Classification of fault type [C,H,/C,H,|CH4/H:|C;H4/C:Hs
0 No fault 0 0 0
1 Low energy corona 0 1 0
2 High energy corona 1 1 0
3 Low energy arcing 1,2 0 1,2
4 High energy arcing 1 0 2
5 <150 thermal fault 0 0 1
6 | 150C~300T thermal fault 0 2 0
7 | 300C~700C thermal fault 0 2 I
8 >700°C thermal fault 0 2 2

2.2 Key Gas Method[2, 3]

Characteristics of “key gases” have been used to
identify particular fault types. The suggested relation-
ship between key gases and fault types is summarized

as:
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H;: Corona (partial discharge)

O, and N; Non-fault related gases

CO and COs: Cellulose insulation breakdown
CH, and C;Hs: Low temperature oil breakdown
C,H;: Arcing (full discharge)

C,Ha High temperature oil breakdown

Excluding O; and N, there are seven fault related
gases. The fault condition is indicated by the excessive
generation of these gases. Since this method does not
give the numerical correlation, the diagnosis depends
greatly on experience. Therefore, this technique is sim-
ple but it requires much operation time. Table 2 lists
the key gas method as applied by KEPCO.[3]

Tabie 2. Criteria of KEPCO unit : [ppm]

Normal Alarm Fault

H; < 400 400 ~800 > 800

(6] < 300 300~800 > 800

C:H: <20 20~100 > 100

CH. < 250 250~750 > 750

C,H, < 250 250~750 > 750

C;H. < 250 250~750 > 750

CO; < 4000 | 4000~7000 > 7000

TCG < 700 700~1800 > 1800
Increasing amount - >250/year | >100/month

I, Fuzzy Information Theory

In this paper, fuzzy information theory is used to
manage the uncertainty and to incorporate various
rules in transformer fault diagnosis using the DGA.
Rule base and fuzzy values are selected based on the

past experience.

3.1 Rule Structure for Diagnosis

A rule structure is defined in this section. Each re-
lation can be used to determine a fuzzy value based
on some observations. In the process of generation of
the diagnostic rules, consistency is based on a fault
tree for the diagnostic problem, and each relationship
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in the diagnostics rules is independent. The basic str-
ucture of the rule base uses a fuzzy set description for
each relation and a fuzzy measure description for the
importance of this relation. Fig. 1 shows the structure

of the diagnostic rules.

Rule (rule_name) R
IF (fuzzy_condition) FC
THEN (fault_conclusion) C

REQUIRED (belief_measure) Bel

Fig. 1 Structure of transformer fault diagnostic rules

In this paper, the diagnostic rules are based on cri-
teria of IEC and KEPCO. Finally, the transformer
fault conclusions consist of normal, corona, arcing,
and thermal which based on the fault tree for trans-

former fault diagnosis as Fig. 2.

UN I VERSE

NO FAULT
(NORMAL )

Fig. 2 Structure of fault tree for transformer fault diagnosis

3.2 Fuzzy Sets[8]

A basic problem in using fuzzy mathematics is that
how to assign fuzzy values. Generally, one can rely on
statistics. In fuzzy domains, statistics are not directly
applicable and clear, the fuzzy values are more sub-

jective. Therefore, the most important consideration is
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to consistent about assigning fuzzy values.

In this paper, the membership function for assign-
ing the fuzzy values used Eq. (1) due to its generality
and consistency. Specifically, for x € [a, b]:

(- '(x—a)
- tx—a} + b —x)*

ux)= 0]
where four parameters characterize each transition
from O to 1:the lower limit @, the upper limit b, the
transition rate A, and the inflection point v. Examples
of the membership functions parameters for the gas
ratio method and the key gas method are listed in
Table 3 and Table 4.

Table 3. Determination of parameter to CHq/H,

ONE | Right side of ZERO | Left side of ZERO | TWO
a | 035 0.06 1.10 0.75
b | 0.06 0.12 0.75 1.16
Al 40 20 20 4.0
v | 09 0.5 0.5 0.8

Table 4. Determination of parameter to H:

Normal| Right side of alarm | Left side of alarm | fault
a | 440 370 850 750
b | 350 450 750 850
A| 40 2.0 2.0 4.0
v | 07 0.5 0.5 0.7

3.3 Fuzzy Measures( 8]

Uncertainty may arise from the value or identity of
some object as opposed to the structure of a set as in
the preceding. This uncertainty can be represented by
fuzzy measures. A fuzzy measure m is defined over
the power set(or more generally a Borel field) of the
universe X as follows:
m: P(X)—[0, 1] (2
satisfying boundary condition, monotonicity, and con-
tinuity. With this general definition of a measure, one
can define various special cases. If in addition to the
above, the following holds(specifically, for 4 € P(X)):
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Bel( l”J A4) = Zn: Bel(4;) - Z”: Bel(4; N A4;) +--
1 i<j

i=1

+(=1)"*" Bel(Ai N AN - N Ay) 3)
then m is a belief measure, represented here as Bel.
Similarly a plausibility measure, represented here as
Pl, is defined if the following holds instead of Eq. (3).
Specifically, for 4 € P(X)

PI(CJ 4) < Z Pi(4;)— i Pi(4;U4;) +--

i=1 i<j

+(~1 ! P4 U AU - U4, @

When Eq. (3) and Eq. (4) are equalities rather than
inequalities then 2 is a probability measure. Belief
and plausibility measure can also be calculated from
Eq. (5) and Eq. (6).

Bel(4)=1-PI(4)
PI(4)=1—Bel(4)

&)
(6)

Notice that the plausibility(belief) of an event is
always greater(less) than the probability of the event.

3.4 Approximate Reasoning

In given some measurements, a fuzzy value can be
determined for FC. Based on this value and Bel, a
fuzzy value for the conclusion, C can be calculated.
The intersection of all rules which apply to this same
conclusion must be computed. Thus, the plausibility
of a conclusion C is calculated at each inference. The
initial value PI°(C;) is one and evidence is gathered in
order to disprove the plausibility of some proposition.
In this paper, missing data can be ignored and will not
decrease the plausibility of any conclusion. The above
is governed by the logical expression:

PIXC) = PIF=Y(C) N (FC; U Bel;) 4]

for rule 7 applied after % inference(each application of
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rule to the same conclusion is one inference). Fig. 3
shows the flowchart to inference sequence as the pre-

processing stage of the proposed system.

Input the measured dissolved gases

o on oiead

Search the related rules

ot s &2 o

Assign the fuzzy values of rules

OB ARIRCEE: &

Calculate the plausibility measures
for fault power set

Calculate the belief measures to
fault and normal

Fig. 3 Flowchart of inference sequence

The following definitions of fuzzy set operations

are commonly used as the logical operators.

If C=4,

puc@) =1—pylx), x€X ®)
If C=ANB,

pc(x) = min(u(x), pslx) ®
H C=AUB,

pe(x) = max(u(x), palx)) (10)

Actually, minimum and maximum functions do not
tend to correspond well with the way people apply
logic, so that, many rcscarchers have used a variety of
operators. The general operator is used in this paper,

specifically:

1

pelx) = (1

I R BRI
14(( ) 1 +( ) 139!

The parameter A determines the nature and strict-
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ness of the operation. If A<0 (A>>0), then C= AUB
(C= AN B). The larger the magnitude of A, the gre-
ater the strictness of A. Notice as [Al—>wx, Eq. (11)
approaches Eq. (9) or Eq. (10). In this paper, based
on several trials, a maximum rate of A=-0.7 and a
minimum rate of A=0.9 were used for the logical

operators.

V. Fuzzy Algorithm Embedded Kohonen
Neural Network

The fault diagnosis is a weighted conclusion drawn
from a number of data pertinent to the equipment. Its
reliability increases with the amount of information
available from previous tests and the degree of experi-
ence of the laboratory performing the analysis. There-
fore, the required rule base could be large and com-
plex.

Highly complex systems can be characterized with
very little explicit knowledge using artificial neural net-
works. The relationship between gas composition and
incipient fault condition is learned by the artificial
neural network(ANN) from actual experience(through
training samples). Obvious and not so obvious(hid-
den) relationships are detected by the ANN and used
to develop its basis for interpretation of dissolved gas-
in-oil data. Through training process, ANN can reveal
complex mechanism that may be unknown to experts.
In contrast, expert system and fuzzy approach can
only use explicit knowledge to establish rule base and
fuzzy membership function selection. Theoretically, an
ANN could represent any observable phenomenon.

An ANN design includes selection of input, output,
network topology(structure, or arrangement of nodes)
and weighted connections of the nodes. Input feature
(information) selection constitutes an essential first
step. The feature space needs to be chosen very care-
fully to ensure that the input features will correctly
reflect the characteristics of the problem. The pro-

cedure is problem dependent.
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4.1 Kohonen Self-organizing Neural Network{ 9]

In the Kohonen feature map, the competitive learn-
ing is the primary identifier. Contrary to updating all
connection weights of all the neurons, the competitive
learning only changes a few neuron weights based on
their activation. For each presented pattern, the com-
petitive learning enables neurons to compete with
each other, the neuron with the maximum activation
is claimed as the winner neuron. Only the winner ne-
uron and its neighbors are allowed to update. There-
fore, the winner neuron and its neighbors are capable
of representing the inherent data characteristics.

A KNN consists of an array of » processing ele-
ments(neurons) that are arranged on a two dimen-
sional plane. Every element of the input vectors x of
m dimensions array is connected to every neuron. The
connections from jth component of input vector to the
ith neuron are defined as w;;. The network weights
represent the property of the input patterns. An ex-
ample of mapping m dimensional input vectors on the
Kohonen layer of 16 neurons is shown in Fig. 4. The
number of the neurons on the Kohonen layer is arbi-
trarily decided. However, the number may influence
the classifier performance. A small number of neurons
can only complete the coarse discrimination of the
training sets, however, a big number may slow the

self organization process.

Kohonen layer

Neuron 1 Neuron 2 Neuron m

input vectors
(Xq Xz e X )

Fig. 4 Structure of Kohonen neural network
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For each presentation of an input vector, a scalar
activation function is calculated. This discriminating
function is chosen to reflect the dissimilarity between
the normalized input vector and the weight vector of
the neuron. The favorite measure to the dissimilarity
is the Euclidean distance or the product. For a given
presentation, the winner neuron is the neuron with
the maximum activation.

The neighborhood is a central concept to the Koh-
onen self organizing feature map. The neighborhoods
are the processing units which are close to the winner
neuron and those in its neighborhood are updated.
Meantime, the neighborhood size decreases to self or-
ganize. The strength of weights updates is also adapt-
ively decreases to guarantee the network convergence.
Therefore, a neighborhood function is monotonically

decreasing in tranining time.

4.2 implementation

The proposed fuzzy algorithm embedded KNN was
also trained and tested on the KEPCO system. The
data of this system can be found in [3]. A Kohoren’s
feature map is shown in Fig. 5. The trained KNN has
2 normal neurons, 8 alarm neurons and 6 fault neur-
ons. Table 5 shows the classification of training pat-
terns. Columns 1 and 5 show the neuron number, and
the columns from 2 to 4 and from 6 to 8 show the
number of patterns responded to these neurons. Table

Kohonen layer

Bel(fault) Bel(normal)

Fig. 5 Result trained by Kohonen neural network
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Table 5. Classification of training patterns

Neuron |Normal| Alarm | Fault |Neuron{Normal} Alarm | Fault
#1 1 2 0 #9 26 1 0
#2 0 9 1 #10 0 4 3
#3 0 14 i #11 0 0 17
#4 2 16 4 #12 0 2 4
#5 1 7 0 #13 70 1 0
#6 0 31 9 #14 0 5 2
#7 0 4 9 #15 0 4 31
#8 0 0 2 #16 0 4 17

Table 6. Test of the Kohonen neural network
Input dimensions 2
Kohonen neurons 16

Initial learning rate 0.5
Initial neighborhood 5
Training patterns 300
Testing patterns 3700
Classification rate 98[%]
X KXo XKs XK Kn
® e o
Fuzzy information
theory
Belief
Fauk measures rmal
Kohonen
neural network

v
Diagnostic result

Fig. 6 Structure of the proposed expert system for trans-
former diagnosis fault (fuzzy algorithm embedded
Kohonen neural network)

3 shows the templates of the KNN and tabulates the
KNN study cases. Finally, Fig. 6 shows the proposed
expert system, fuzzy algorithm embedded KNN, for

transformer fault diagnosis using DGA.
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V. Examples of Diagnostic Results

To demonstrate the validity of the proposed sys-
tem, we choose 4,000 dissolved gas data of power tr-
ansformers, that is acquired from KEPCO with §
years dissolved gas record from 1991 to 1995. We im-
prove the accuracy of diagnostic result about 100
fault data, 700 alarm data, and 3,200 normal data in
power transformers. The typical case studies are in
Table 7, Table 8, and Table 9, respectively. Table 10
is shown results of case studies applied by KNN. The
each shaded region stands for the winner neuron to
minimize Euclidean distance in each case study. In
this paper, the proposed system offers the diagnostic
results which consist of suspected transformer faults
and their severity. It is found that more appropriate
fault types and fault severity can support the main-
tenance personnels to increase the performance of tr-

ansformer fault diagnosis.

Table 7. Case study #1 unit : {[ppm]
CO; | CO | H: | CHs | C;H: | C:H, | C;Hs
940 138 | 26 558 0 960 365

IEC Thermal (300{C]~700[C))
Rogers Unknown
KEPCO Fault
Proposed Thermal-Fauit
method | Belief measure of fault:0.87 | Belief measure of normal: 0.09
Table 8. Case study #2 unit : [ppm]
CO, | CO | H; | CHy | C:H; | C;H4 | C:He
838 73 1437 76 0 51 25
IEC Unknown
Rogers Unknown
KEPCO Alarm
Proposed Corona-Alarm
method | Belief measure of fault:O.SZ[ Belief measure of normal:0.23
Table 9. Case study #3 unit: {[ppm]
CO; | CO | H; | CHy | C;H, | C;Hs | C:Ho

562 | 113 | § 25 0 10 19

IEC Thermal (150{C]~300{TC))
Rogers Thermal (slight overheating to 150{C1)
KEPCO Normal
Proposed Normal
method | Belief measure of fault : 0.26[ Belief measure of normal: 0.67
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Table 10. Result of case studies

Neuron Type Case 1 Case 2 Case 3
#1 i Alarm 0.72632 0.26226 0.18579

#2 Alarm 0.62174 0.18522 0.27511

#3 Alarm 0.55782 0.10305 0.37101

#4 Alarm 0.48116 0.09930 0.47037

#5 Alarm 0.74112 | 0.31146 0.13688

#6 Alarm 0.57294 | 0.19840 0.30095
#7. Fault 0.48922 | 0.15437 0.40171

% #8 Fault 0.38744 | 0.19002 0.53568
#9 Normal | 0.89175 0.47191 0.04151

| #10 Alarm 0.67771 0.29218 0.18140
#11 Fault 0.36235 025772 | 0.50125
#12 Fault 0.17923 0.39749 0.70503
JB Normal | 0.87196 | 046727 0.02111
i #14 Alarm 0.74276 | 0.37368 0.10973
#15 Fault 0.21086 | 0.38837 0.64350
#16 Fault 0.06419 0.51573 0.80935

V. Conclusion

This paper studies a hybrid expert system for trans-
former fault diagnosis. The hybrid expert system pre-
sents an intelligent approach to diagnose and detect
faults in power transformers using dissolved gas an-
alysis. The proposed system, fuzzy algorithm embed-
ded Kohonen neural network approach, diagnose the
suspected transformer fault and their severity. Fuzzy
information theory is used to manage the uncertainty
in diagnostic problems. And it is also used to perform
basic diagnosis using dissolved gas analysis. Kohonen
neural network identified the transformer fault as the
interim results by applying fuzzy algorithm. Good di-
agnostic accuracy is obtained with the proposed sys-
tem.
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