• 제목/요약/키워드: Neural network disturbance observer

검색결과 27건 처리시간 0.025초

신경회로망 외란 관측기를 이용한 불확실한 로봇 시스템의 운동 제어 (Motion Control of an Uncertain robotic Manipulator System via Neural Network Disturbance Observer)

  • 김은태;김한정
    • 전자공학회논문지SC
    • /
    • 제39권4호
    • /
    • pp.6-15
    • /
    • 2002
  • 본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.

신경망 추정기를 이용한 2관성 공진계의 속도 제어 (Speed Control of Two-Mass System Using Neural Network Estimator)

  • 이교범;송중호;최익;김광배;이광원
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.286-293
    • /
    • 1999
  • A new control scheme using a torsional torque estimator based on a neural network is proposed and investigated for improving control characteristics of the high-performance motion control system. This control method presents better performance in the corresponding speed vibration response, compared with the disturbance observer-based control method. This result comes from the fact that the proposed neural network estimator keeps the self-learning capability, whereas the disturbance observer-based torque estimator with low pass filter should dbjust the time constant of the adopted filter according to the natural resonance frequency detemined by considering the system parameters varied. The simulation results shows the validity of the proposed control scheme.

  • PDF

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator)

  • 고종선;이용재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

외란 관측기를 이용한 비선형 시스템의 강인 적응제어 (Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer)

  • 황영호;한병조;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

외란관측기와 신경 회로망을 이용한 자동문 시스템의 안전성 개선 (Safety Improvement of an Automatic Door System Using a Disturbance Observer and Neural Network)

  • 유영동;이교범;홍석교
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.401-410
    • /
    • 2010
  • 편리성 및 방범의 용도로 사용이 늘어나고 있는 일반 자동문에서 출입자의 충돌이나 끼임 사고 같은 안전사고가 발생하고 있다. 본 논문은 출입문으로 사용되고 있는 자동문의 안전성 개선에 관한 것으로, 기존의 외부 안전 센서들을 보완하는 방법을 제안하고자 한다. 자동문 모델링을 통해 외란 관측기를 설계하고, 신경 회로망을 설계하여 관측된 외란과 신경 회로망의 출력의 오차를 비교하는 알고리즘을 제시한다. 제안된 기법의 타당성과 유효성을 실험을 통해 증명한다. 본 논문에서 제안한 방법으로 자동문의 안전성을 높여줄 수 있을 것으로 기대된다.

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation)

  • 고종선;이용재;김규겸
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF

함수 연결 신경망과 외란 관측기를 이용한 힘 추정기 설계 및 로봇 매니퓰레이터에의 응용 (Design of a Force Estimator using an FLANN with a Disturbance Observer and Application to a Robot Manipulator)

  • 채원범;안현식;김도현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.27-30
    • /
    • 2000
  • In this paper, we propose a new approach to determination of environment forces acting on a rigid body. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator using functional link neural network (FLANN) is designed. It is also shown by simulation results that the precise estimation of contact force is achieved for a 2-link SCARA robot performing position/force control.

  • PDF

신경 회로망과 관측기에 기반한 2-mass 시스템에서의 속도 제어기 설계 (Design of a Speed Controller for 2-Mass System Based on Neural Network and Observer)

  • 현대성;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.361-361
    • /
    • 2000
  • In the 2-mass system with flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission as the newly required speed response which is very close to the primary resonant frequency. This vibration makes it difficult to achieve quick responses of speed and disturbance rejection. In this paper, 2-mass system is designed by using pole placement based on optimal control theory fur fast speed response and torsional vibration elimination and using neural network for disturbance rejection in particular. The simulation results show that the proposed controller based on neural network and full state feedback controller has better performance than 려ll state feedback controller, especially fur disturbance rejection.

  • PDF

신경망을 이용한 비선형 시스템의 외란 관측기 설계 (Design of Disturbance Observer of Nonlinear System Using Neural Network)

  • 신창섭;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2046-2048
    • /
    • 2003
  • In this paper, a neural disturbance observer(NDO) is developed and its application to the control of a nonlinear system with the internal and/or external disturbances is presented. To construct the NDO, a parameter tuning method is proposed and shown to be useful in adjusting the parameters of the NDO. The tuning method employes the disturbance observation error to guarantee that the NDO monitors unknown disturbances. Each of the nodes of the hidden layer in the NDO network is a radial basis function(RBF). In addition, the relationships between the suggested NDO-based control and the conventional adaptive controls reported in the previous literatures are discussed. And it is shown in a rigorous manner that the disturbance observation error converges to a region of which size can be kept arbitrarily small. Finally, an example and some computer simulation results are presented to illustrate the effectiveness and the applicability of the NDO.

  • PDF