• Title/Summary/Keyword: Neural network control

Search Result 2,576, Processing Time 0.034 seconds

Neural Network PID control method for robust disturbance (외란에 강인한 신경망 PID 제어방식)

  • 김영렬;이정훈;강성호;임성진;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.945-948
    • /
    • 2003
  • In this paper, we propose a robust PID control method with neural network to minimize the influence of the disturbance to happen in the system. The proposed method, the neural network filters out the disturbance of control system. The plant input which a disturbance is included is compensated to the output of neural network and the plant is controlled only PID controller. Through the DC motor control simulation and MM-LDM position control experiment, we could confirm the proposed method is robust at the disturbance in control system.

  • PDF

A Robust PID Control Method with Neural Network

  • Kang, Seong-Ho;Lee, Yong-Gu;Eom, Ki-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The problem of reducing the effect of an unknown disturbance on a dynamical system is one of the most fundamental issues in control design. We propose a robust PID (Proportional Integral Derivative) control method with neural network for improving the performance due to the rejection of an unknown disturbance. The proposed system consists of a model of the plant, a conventional PID controller and a multi-layer neural network, and is composed of two loop; the first loop enables the system to achieve stability of system, the second loop rejects an unknown disturbance. Simulation and experiment results show that the proposed method improves considerably on the performance of the conventional PID control method and the typical IMC method using neural network.

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

Implementation of Hybrid Neural Network for Improving Learning ability and Its Application to Visual Tracking Control (학습 성능의 개선을 위한 복합형 신경회로망의 구현과 이의 시각 추적 제어에의 적용)

  • 김경민;박중조;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1652-1662
    • /
    • 1995
  • In this paper, a hybrid neural network is proposed to improve the learning ability of a neural network. The union of the characteristics of a Self-Organizing Neural Network model and of multi-layer perceptron model using the backpropagation learning method gives us the advantage of reduction of the learning error and the learning time. In learning process, the proposed hybrid neural network reduces the number of nodes in hidden layers to reduce the calculation time. And this proposed neural network uses the fuzzy feedback values, when it updates the responding region of each node in the hidden layer. To show the effectiveness of this proposed hybrid neural network, the boolean function(XOR, 3Bit Parity) and the solution of inverse kinematics are used. Finally, this proposed hybrid neural network is applied to the visual tracking control of a PUMA560 robot, and the result data is presented.

  • PDF

Nonlinear System Modelling Using Neural Network and Genetic Algorithm

  • Kim, Hong-Bok;Kim, Jung-Keun;Hwang, Seung-Wook;Ha, Yun-Su;Jin, Gang-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.2-71
    • /
    • 2001
  • This paper deals with nonlinear system modelling using neural network and genetic algorithm. Application of neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. In this paper, We optimize neural network structure using genetic algorithm. The genetic algorithm uses binary coding for neural network structure and search for optimal neural network structure of minimum error and response time. Through extensive simulation, Optimal neural network structure is shown to be effective for ...

  • PDF

A Study on Ultrasonic Motor Speed Control Characteristic with Neural Networks (신경회로망을 이용한 초음파모터의 속도 특성에 관한 연구)

  • Cha, In-Su;Cho, Je-Hwang;Kim, Pyeng-Ho;Song, Chan-Il;Lee, Sang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.39-41
    • /
    • 1995
  • The inherent performance of Ultrasonic Motor(USM) which is on of highlighted a directly-driven positioning servo motor/actuator. In this paper, the speed of control USM based on neural network control. The neural network control can roughly be classified as the direct control and indirect control schemes. An indirect control scheme is adopted for Ultrasonic Motor speed control. A back propagation algorithm is used to train neural network controller. The Simulation results show that this neural network control system can provide good dynamical responses.

  • PDF

Input Signal Estimation About Controller Using Neural Networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son Jun-Hyeok;Seo Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.495-497
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

Input signal estimation about controller using neural networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.18-20
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

  • PDF

Hybrid position/force control of uncertain robotic systems using neural networks (신경회로망을 이용한 불확실한 로봇 시스템의 하이브리드 위치/힘 제어)

  • Kim, Seong-U;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.252-258
    • /
    • 1997
  • This paper presents neural networks for hybrid position/force control which is a type of position and force control for robot manipulators. The performance of conventional hybrid position/force control is excellent in the case of the exactly-known dynamic model of the robot, but degrades seriously as the uncertainty of the model increases. Hence, the neural network control scheme is presented here to overcome such shortcoming. The introduced neural term is designed to learn the uncertainty of the robot, and to control the robot through uncertainty compensation. Further more, the learning rule of the neural network is derived and is shown to be effective in the sense that it requires neither desired output of the network nor error back propagation through the plant. The proposed scheme is verified through the simulation of hybrid position/force control of a 6-dof robot manipulator.

  • PDF

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF