• 제목/요약/키워드: Neural network algorithm

검색결과 3,547건 처리시간 0.033초

신경망을 이용한 자기동조 비선형 PID제어 (Self-tuning Nonlinear PID Control Using Neural Network)

  • 김대호;김정욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2102-2104
    • /
    • 2001
  • This paper present the strategy of self-tuning nonlinear PID control using neural network. The nonlinear PID controller consists of a conventional PID controller and a neural network compensator. The neural network is trained by back-propagation algorithm. In this paper we propose modified back-propagation algorithm to improve learning speed. The results of simulation show the usefulness of the proposed scheme.

  • PDF

Software Effort Estimation in Rapidly Changing Computng Environment

  • Eung S. Jun;Lee, Jae K.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.133-141
    • /
    • 2001
  • Since the computing environment changes very rapidly, the estimation of software effort is very difficult because it is not easy to collect a sufficient number of relevant cases from the historical data. If we pinpoint the cases, the number of cases becomes too small. However is we adopt too many cases, the relevance declines. So in this paper we attempt to balance the number of cases and relevance. Since many researches on software effort estimation showed that the neural network models perform at least as well as the other approaches, so we selected the neural network model as the basic estimator. We propose a search method that finds the right level of relevant cases for the neural network model. For the selected case set. eliminating the qualitative input factors with the same values can reduce the scale of the neural network model. Since there exists a multitude of combinations of case sets, we need to search for the optimal reduced neural network model and corresponding case, set. To find the quasi-optimal model from the hierarchy of reduced neural network models, we adopted the beam search technique and devised the Case-Set Selection Algorithm. This algorithm can be adopted in the case-adaptive software effort estimation systems.

  • PDF

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

Training an Artificial Neural Network for Estimating the Power Flow State

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.275-280
    • /
    • 2005
  • The principal context of this research is the approach to an artificial neural network algorithm which solves multivariable nonlinear equation systems by estimating the state of line power flow. First a dynamical neural network with feedback is used to find the minimum value of the objective function at each iteration of the state estimator algorithm. In second step a two-layer neural network structures is derived to implement all of the different matrix-vector products that arise in neural network state estimator analysis. For hardware requirements, as they relate to the total number of internal connections, the architecture developed here preserves in its structure the pronounced sparsity of power networks for which state the estimator analysis is to be carried out. A principal feature of the architecture is that the computing time overheads in solution are independent of the dimensions or structure of the equation system. It is here where the ultrahigh-speed of massively parallel computing in neural networks can offer major practical benefit.

  • PDF

퍼셉트론형 신경회로망에 의한 패리티판별 (Parity Discrimination by Perceptron Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.565-571
    • /
    • 2010
  • 본 논문에서는 퍼셉트론형 신경회로망에 오차역전파 알고리즘을 사용하여 학습을 실시하여, N비트의 패리티판별에 필요한 최소의 중간유닛수의 해석에 관한 연구이다. 따라서 본 논문은 제안한 퍼셉트론형 신경회로망의 중간 유닛의 수를 변화시켜 N비트의 패리티 판별 실험을 실시하였다. 본 시스템은 패라티 판별의 실험을 통하여 N비트 패리티 판별이 가능하다는 것을 실험으로 확인한다.

신경회로망을 이용한 사과의 색택선별 알고리즘 개발에 관한 연구 (Development of Apple Color Sorting Algorithm using Neural Network)

  • 이수희;노상하;이종환
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.376-382
    • /
    • 1995
  • This study was intended to develop more reliable fruit sorting algorithm regardless of the feeding positions of fruits by using the neural network in which various information could be included as input data. Specific objectives of this study were to select proper input units in the neural network by investigating the features of input image, to analyze the sorting accuracy of the algorithm depending on the feeding positions of Fuji apple and to evaluate the performance of the algorithm for practical usage. the average value in color grading accuracy was 90%. Based on the computing time required for color grading, the maximum sorting capacity was estimated to approximately 10, 800 apples per hours. Finally, it is concluded that the neuro-net based color sorting algorithm developed in this study has feasibility for practical usage.

  • PDF

국방분야 비인가 이미지 파일 탐지를 위한 다중 레벨 컨볼루션 신경망 알고리즘의 구현 및 검증 (Implementation and Verification of Multi-level Convolutional Neural Network Algorithm for Identifying Unauthorized Image Files in the Military)

  • 김영수
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.858-863
    • /
    • 2018
  • In this paper, we propose and implement a multi-level convolutional neural network (CNN) algorithm to identify the sexually explicit and lewdness of various image files, and verify its effectiveness by using unauthorized image files generated in the actual military. The proposed algorithm increases the accuracy by applying the convolutional artificial neural network step by step to minimize classification error between similar categories. Experimental data have categorized 20,005 images in the real field into 6 authorization categories and 11 non-authorization categories. Experimental results show that the overall detection rate is 99.51% for the image files. In particular, the excellence of the proposed algorithm is verified through reducing the identification error rate between similar categories by 64.87% compared with the general CNN algorithm.

웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구 (A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network)

  • 송미혜;박호동;이경중;박광리
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

인공신경망과 유전 알고리즘을 이용한 팩맨 게임 강화학습 (Pacman Game Reinforcement Learning Using Artificial Neural-network and Genetic Algorithm)

  • 박진수;이호정;황두연;조수선
    • 대한임베디드공학회논문지
    • /
    • 제15권5호
    • /
    • pp.261-268
    • /
    • 2020
  • Genetic algorithms find the optimal solution by mimicking the evolution of natural organisms. In this study, the genetic algorithm was used to enable Pac-Man's reinforcement learning, and a simulator to observe the evolutionary process was implemented. The purpose of this paper is to reinforce the learning of the Pacman AI of the simulator, and utilize genetic algorithm and artificial neural network as the method. In particular, by building a low-power artificial neural network and applying it to a genetic algorithm, it was intended to increase the possibility of implementation in a low-power embedded system.

GENIE : 신경망 적응과 유전자 탐색 기반의 학습형 지능 시스템 엔진 (GENIE : A learning intelligent system engine based on neural adaptation and genetic search)

  • 장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.27-34
    • /
    • 1996
  • GENIE is a learning-based engine for building intelligent systems. Learning in GENIE proceeds by incrementally modeling its human or technical environment using a neural network and a genetic algorithm. The neural network is used to represent the knowledge for solving a given task and has the ability to grow its structure. The genetic algorithm provides the neural network with training examples by actively exploring the example space of the problem. Integrated into the training examples by actively exploring the example space of the problem. Integrated into the GENIE system architecture, the genetic algorithm and the neural network build a virtually self-teaching autonomous learning system. This paper describes the structure of GENIE and its learning components. The performance is demonstrated on a robot learning problem. We also discuss the lessons learned from experiments with GENIE and point out further possibilities of effectively hybridizing genetic algorithms with neural networks and other softcomputing techniques.

  • PDF