• 제목/요약/키워드: Neural data

검색결과 5,193건 처리시간 0.03초

유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크를 이용한 비선형 공정데이터의 최적 동정 (Optimal Identification of Nonlinear Process Data Using GAs-based Fuzzy Polynomial Neural Networks)

  • 이인태;김완수;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.6-8
    • /
    • 2005
  • In this paper, we discuss model identification of nonlinear data using GAs-based Fuzzy Polynomial Neural Networks(GAs-FPNN). Fuzzy Polynomial Neural Networks(FPNN) is proposed model based Group Method Data Handling(GMDH) and Neural Networks(NNs). Each node of FPNN is expressed Fuzzy Polynomial Neuron(FPN). Network structure of nonlinear data is created using Genetic Algorithms(GAs) of optimal search method. Accordingly, GAs-FPNN have more inflexible than the existing models (in)from structure selecting. The proposed model select and identify its for optimal search of Genetic Algorithms that are no. of input variables, input variable numbers and consequence structures. The GAs-FPNN model is select tuning to input variable number, number of input variable and the last part structure through optimal search of Genetic Algorithms. It is shown that nonlinear data model design using Genetic Algorithms based FPNN is more usefulness and effectiveness than the existing models.

  • PDF

Error Analysis of Measure-Correlate-Predict Methods for Long-Term Correction of Wind Data

  • ;김현구;서현수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2008
  • In these days the installation of wind turbines or wind parks includes a high financial risk. So for the planning and the constructing of wind farms, long-term data of wind speed and wind direction is required. However, in most cases only few data are available at the designated places. Traditional Measure-Correlate-Predict (MCP) can extend this data by using data of nearby meteorological stations. But also Neural Networks can create such long-term predictions. The key issue of this paper is to demonstrate the possibility and the quality of predictions using Neural Networks. Thereto this paper compares the results of different MCP Models and Neural Networks for creating long-term data with various indexes.

  • PDF

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae;Han, Juhyeong;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.395-402
    • /
    • 2022
  • To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

신경망을 이용한 세일링 요트 리제너레이션 시스템의 배터리 충전 예측 (Battery charge prediction of sailing yacht regeneration system using neural networks)

  • 이태희;황우성;최명렬
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.241-246
    • /
    • 2020
  • 본 논문에서는 해양 전기추진 시스템과 딥러닝 알고리즘을 융합하여 전기추진 리제너레이션 시스템에서 DC/DC 컨버터 출력 전류 예측 및 리제너레이션 수행 시 배터리 충전량을 예측하기 위해 신경망 모델을 제안한다. 제안 된 신경망을 실험하기 위해 PCM의 입력 전압과 전류를 측정하고 시제품 PCM 보드의 출력 결과를 통해 데이터 세트를 구성하였다. 또한 불충분 한 데이터 세트에서 학습 결과를 향상시키기 위해 기존 데이터 세트를 데이터 피팅하여 학습을 진행하였다. 학습 후 신경망 모델의 데이터 예측 결과와 실제 측정 데이터의 차이를 그래프를 통해 확인하였다. 제안한 신경망 모델은 입력 전압과 전류 변화에 따른 배터리 충전량 예측을 효율적으로 보여주었다. 또한, DC/DC 컨버터를 구성하는 아날로그 회로의 특성변화를 신경망을 통하여 예측함으로써, 리제너레이션 시스템의 설계 시, 아날로그 회로의 특성을 고려해야 할 것으로 판단된다.

신경회로망과 실험계획법을 이용한 타이어의 장력 추정 (Tension Estimation of Tire using Neural Networks and DOE)

  • 이동우;조석수
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.814-820
    • /
    • 2011
  • It takes long time in numerical simulation because structural design for tire requires the nonlinear material property. Neural networks has been widely studied to engineering design to reduce numerical computation time. The numbers of hidden layer, hidden layer neuron and training data have been considered as the structural design variables of neural networks. In application of neural networks to optimize design, there are a few studies about arrangement method of input layer neurons. To investigate the effect of input layer neuron arrangement on neural networks, the variables of tire contour design and tension in bead area were assigned to inputs and output for neural networks respectively. Design variables arrangement in input layer were determined by main effect analysis. The number of hidden layer, the number of hidden layer neuron and the number of training data and so on have been considered as the structural design variables of neural networks. In application to optimization design problem of neural networks, there are few studies about arrangement method of input layer neurons. To investigate the effect of arrangement of input neurons on neural network learning tire contour design parameters and tension in bead area were assigned to neural input and output respectively. Design variables arrangement in input layer was determined by main effect analysis.

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Comparison of EKF and UKF on Training the Artificial Neural Network

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.499-506
    • /
    • 2004
  • The Unscented Kalman Filter is known to outperform the Extended Kalman Filter for the nonlinear state estimation with a significance advantage that it does not require the computation of Jacobian but EKF has a competitive advantage to the UKF on the performance time. We compare both algorithms on training the artificial neural network. The validation data set is used to estimate parameters which are supposed to result in better fitting for the test data set. Experimental results are presented which indicate the performance of both algorithms.

  • PDF

Improved Learning Algorithm with Variable Activating Functions

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.815-821
    • /
    • 2005
  • Among the various artificial neural networks the backpropagation network (BPN) has become a standard one. One of the components in a neural network is an activating function or a transfer function of which a representative function is a sigmoid. We have discovered that by updating the slope parameter of a sigmoid function simultaneous with the weights could improve performance of a BPN.

  • PDF

비전공자 학부생의 훈련데이터와 기초 인공신경망 개발 결과 분석 및 Orange 활용 (Analysis and Orange Utilization of Training Data and Basic Artificial Neural Network Development Results of Non-majors)

  • 허경
    • 실천공학교육논문지
    • /
    • 제15권2호
    • /
    • pp.381-388
    • /
    • 2023
  • 스프레드시트를 활용한 인공신경망 교육을 통해, 비전공자 학부생들은 인공신경망의 동작 원리을 이해하며 자신만의 인공신경망 SW를 개발할 수 있다. 여기서, 인공신경망의 동작 원리 교육은 훈련데이터의 생성과 정답 라벨의 할당부터 시작한다. 이후, 인공 뉴런의 발화 및 활성화 함수, 입력층과 은닉층 그리고 출력층의 매개변수들로부터 계산되는 출력값을 학습한다. 마지막으로, 최초 정의된 각 훈련데이터의 정답 라벨과 인공신경망이 계산한 출력값 간 오차를 계산하는 과정을 학습하고 오차제곱의 총합을 최소화하는 입력층과 은닉층 그리고 출력층의 매개변수들이 계산되는 과정을 학습한다. 스프레드시트를 활용한 인공신경망 동작 원리 교육을 비전공자 학부생 대상으로 실시하였다. 그리고 이미지 훈련데이터와 기초 인공신경망 개발 결과를 수집하였다. 본 논문에서는 12화소 크기의 소용량 이미지로 두 가지 훈련데이터와 해당 인공신경망 SW를 수집한 결과를 분석하고, 수집한 훈련데이터를 Orange 머신러닝 모델 학습 및 분석 도구에 활용하는 방법과 실행 결과를 제시하였다.

인공신경망기법을 이용한 하천수질인자의 예측모델링 - BOD와 DO를 중심으로- (Predictive Modeling of River Water Quality Factors Using Artificial Neural Network Technique - Focusing on BOD and DO-)

  • 조현경
    • 한국환경과학회지
    • /
    • 제9권6호
    • /
    • pp.455-462
    • /
    • 2000
  • This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju q and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, CO discharge and precipitation. As a result, it showed that method III of three methods was suitable more han other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.

  • PDF