• 제목/요약/키워드: Neural data

검색결과 5,193건 처리시간 0.035초

A comparative study between the neural network and the winters' model in forecasting

  • Kim, Wanhee
    • 경영과학
    • /
    • 제9권1호
    • /
    • pp.17-30
    • /
    • 1992
  • This paper is organized as follows. Section 2 illustrates several applications of neural networks. Section 3 presents the theoretical aspects of the major neural network paradigms as well as the structure of the back -propagation network used in the study. Section 4 describes the experiment including data analysis, modeling, and the performance criteria followed by the detailed discussion of the experimental results. Future research avenues including advantages and limitations of neural network are presented in the last section.

  • PDF

레이저 표면경화공정에서 신경회로망을 이용한 경화층깊이의 측정 (Estimation of hardening depth using neural network in LASER surface hardening process)

  • 박영준;우현구;조형석;한유희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.212-217
    • /
    • 1993
  • In this paper, the hardening depth in Laser surface hardening process is estimated using a multilayered neural network. Input data of the neural network are surface temperature of five points, power and travelling speed of Laser beam. A FDM(finite difference method) is used for modeling the Laser surface hardening process. This model is used to obtain the network's training data sample and to evaluate the performance of the neural network estimator. The simulational results showed that the proposed scheme can be used to estimate the hardening depth on real time.

  • PDF

Fuzzy Rules Optimizing by Neural Network-based Adaptive Fuzzy Control

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.96.2-96
    • /
    • 2001
  • This paper presents a control method for the experimental mobile vehicle. By merging the advantages of neural network, adaptive and fuzzy control, neural network-based adaptive fuzzy control is proposed. It can deal with a large amount of training data by neural network, from these data producing more accurate fuzzy rules by adaptive control, and then controlling the object by fuzzy control. This is not the simple combination of the three methods, but merging them into one control system Experiments and some future considerations are given.

  • PDF

Receiver Operating Characteristic (ROC) Curves Using Neural Network in Classification

  • Lee, Jea-Young;Lee, Yong-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.911-920
    • /
    • 2004
  • We try receiver operating characteristic(ROC) curves by neural networks of logistic function. The models are shown to arise from model classification for normal (diseased) and abnormal (nondiseased) groups in medical research. A few goodness-of-fit test statistics using normality curves are discussed and the performances using neural networks of logistic function are conducted.

  • PDF

신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구 (A Study on ECG Oata Compression Algorithm Using Neural Network)

  • 김태국;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권3호
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • 대한치매학회지
    • /
    • 제17권3호
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

A System for Improving Data Leakage Detection based on Association Relationship between Data Leakage Patterns

  • Seo, Min-Ji;Kim, Myung-Ho
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.520-537
    • /
    • 2019
  • This paper proposes a system that can detect the data leakage pattern using a convolutional neural network based on defining the behaviors of leaking data. In this case, the leakage detection scenario of data leakage is composed of the patterns of occurrence of security logs by administration and related patterns between the security logs that are analyzed by association relationship analysis. This proposed system then detects whether the data is leaked through the convolutional neural network using an insider malicious behavior graph. Since each graph is drawn according to the leakage detection scenario of a data leakage, the system can identify the criminal insider along with the source of malicious behavior according to the results of the convolutional neural network. The results of the performance experiment using a virtual scenario show that even if a new malicious pattern that has not been previously defined is inputted into the data leakage detection system, it is possible to determine whether the data has been leaked. In addition, as compared with other data leakage detection systems, it can be seen that the proposed system is able to detect data leakage more flexibly.

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.95-99
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.

Configuration design of the trainset of a high-speed train using neural networks

  • Lee, Jangyong;Soonhung Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.116-121
    • /
    • 2001
  • Prediction of the top(service) speeds of high-speed trains and configuration design to trainset of them has been studied using the neural network system The traction system. The traction system of high-speed trains is composed of transformers, motor blocks, and traction motors of which locations and number in the trainset formation should be determine in the early stage of train conceptural design. Components of the traction system are the heaviest parts in a train so that it gives strong influence to the top speeds of high-speed trains. Prediction of the top speeds has been performed mainly with data associated with the traction system based on the frequently used neural network system-backpropagation. The neural network has been trained with the data of the high-speed trains such as TGV, ICE, and Shinkanse. Configuration design of the trainset determines the number of trains motor cars, traction motors, weights and power of trains. Configuration results from the neural network are more accurate if neural networks is trained with data of the same type of trains will be designed.

  • PDF