• Title/Summary/Keyword: Neural adaptation

Search Result 169, Processing Time 0.021 seconds

The Effect of Central Neural Adaptation by Neuromuscular Electrical Stimulation (신경근전기자극에 의한 중추신경원의 순응효과)

  • Lee, Jeong-Woo;Seo, Sam-Ki;Yoon, Se-Won;Kim, Yong-Eok;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.5 no.1
    • /
    • pp.59-71
    • /
    • 2007
  • The purpose of this study was to study for the change of neural adaptation by muscle contraction force when neuromuscular electrical stimulation(NMES) was applied. Sixteen subjects(8 male, 8 female) without neuromuscular disease volunteered to participate in the study. All subjects were divided into two subgroups: control(no electrical stimulation) group, NMES(50% maximal voluntary isometric contraction) group. NMES training program was performed in the calf muscle over three times a week for 12 weeks. Before and after experiment MVIC of ankle plantar flexor was measured by use of dynamometer. H-reflex and V-wave in tibial nerve were measured. The following results were obtained; MVIC and V/Mmax ratio were significantly increased in the electrical stimulation groups. However, H/Mmax ratio was not changed. It was closely relationship between MVIC and V/Mmax ratio. In this study, the effect of neural adaptation of central neural adaptation was found in this study. Accordingly, NMES means not only a change of muscle fiber and skeletal muscle volume but also a effect of neural adaptation of central neural drive. Also, it was found that there was closely relationship between MVIC and neural adaptation of central neural drive by NMES.

  • PDF

Error elimination for systems with periodic disturbances using adaptive neural-network technique (주기적 외란을 수반하는 시스템의 적응 신경망 회로 기법에 의한 오차 제거)

  • Kim, Han-Joong;Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.898-906
    • /
    • 1999
  • A control structure is introduced for the purpose of rejecting periodic (or repetitive) disturbances on a tracking system. The objective of the proposed structure is to drive the output of the system to the reference input that will result in perfect following without any changing the inner configuration of the system. The structure includes an adaptation block which learns the dynamics of the periodic disturbance and forces the interferences, caused by disturbances, on the output of the system to be reduced. Since the control structure acquires the dynamics of the disturbance by on-line adaptation, it is possible to generate control signals that reject any slowly varying time-periodic disturbance provided that its amplitude is bounded. The artificial neural network is adopted as the adaptation block. The adaptation is done at an on-line process. For this , the real-time recurrent learning (RTRL) algoritnm is applied to the training of the artificial neural network.

  • PDF

Robust architecture search using network adaptation

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.290-294
    • /
    • 2021
  • Experts have designed popular and successful model architectures, which, however, were not the optimal option for different scenarios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a network adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than that of the State Of The Art (SOTA) NAS method.

Selective Adaptation of Speaker Characteristics within a Subcluster Neural Network

  • Haskey, S.J.;Datta, S.
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.464-467
    • /
    • 1996
  • This paper aims to exploit inter/intra-speaker phoneme sub-class variations as criteria for adaptation in a phoneme recognition system based on a novel neural network architecture. Using a subcluster neural network design based on the One-Class-in-One-Network (OCON) feed forward subnets, similar to those proposed by Kung (2) and Jou (1), joined by a common front-end layer. the idea is to adapt only the neurons within the common front-end layer of the network. Consequently resulting in an adaptation which can be concentrated primarily on the speakers vocal characteristics. Since the adaptation occurs in an area common to all classes, convergence on a single class will improve the recognition of the remaining classes in the network. Results show that adaptation towards a phoneme, in the vowel sub-class, for speakers MDABO and MWBTO Improve the recognition of remaining vowel sub-class phonemes from the same speaker

  • PDF

Fast speaker adaptation using extended diagonal linear transformation for deep neural networks

  • Kim, Donghyun;Kim, Sanghun
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.109-116
    • /
    • 2019
  • This paper explores new techniques that are based on a hidden-layer linear transformation for fast speaker adaptation used in deep neural networks (DNNs). Conventional methods using affine transformations are ineffective because they require a relatively large number of parameters to perform. Meanwhile, methods that employ singular-value decomposition (SVD) are utilized because they are effective at reducing adaptive parameters. However, a matrix decomposition is computationally expensive when using online services. We propose the use of an extended diagonal linear transformation method to minimize adaptation parameters without SVD to increase the performance level for tasks that require smaller degrees of adaptation. In Korean large vocabulary continuous speech recognition (LVCSR) tasks, the proposed method shows significant improvements with error-reduction rates of 8.4% and 17.1% in five and 50 conversational sentence adaptations, respectively. Compared with the adaptation methods using SVD, there is an increased recognition performance with fewer parameters.

Improving Adversarial Domain Adaptation with Mixup Regularization

  • Bayarchimeg Kalina;Youngbok Cho
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.139-144
    • /
    • 2023
  • Engineers prefer deep neural networks (DNNs) for solving computer vision problems. However, DNNs pose two major problems. First, neural networks require large amounts of well-labeled data for training. Second, the covariate shift problem is common in computer vision problems. Domain adaptation has been proposed to mitigate this problem. Recent work on adversarial-learning-based unsupervised domain adaptation (UDA) has explained transferability and enabled the model to learn robust features. Despite this advantage, current methods do not guarantee the distinguishability of the latent space unless they consider class-aware information of the target domain. Furthermore, source and target examples alone cannot efficiently extract domain-invariant features from the encoded spaces. To alleviate the problems of existing UDA methods, we propose the mixup regularization in adversarial discriminative domain adaptation (ADDA) method. We validated the effectiveness and generality of the proposed method by performing experiments under three adaptation scenarios: MNIST to USPS, SVHN to MNIST, and MNIST to MNIST-M.

Comparison of Deep Learning-based Unsupervised Domain Adaptation Models for Crop Classification (작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델 비교)

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • The unsupervised domain adaptation can solve the impractical issue of repeatedly collecting high-quality training data every year for annual crop classification. This study evaluates the applicability of deep learning-based unsupervised domain adaptation models for crop classification. Three unsupervised domain adaptation models including a deep adaptation network (DAN), a deep reconstruction-classification network, and a domain adversarial neural network (DANN) are quantitatively compared via a crop classification experiment using unmanned aerial vehicle images in Hapcheon-gun and Changnyeong-gun, the major garlic and onion cultivation areas in Korea. As source baseline and target baseline models, convolutional neural networks (CNNs) are additionally applied to evaluate the classification performance of the unsupervised domain adaptation models. The three unsupervised domain adaptation models outperformed the source baseline CNN, but the different classification performances were observed depending on the degree of inconsistency between data distributions in source and target images. The classification accuracy of DAN was higher than that of the other two models when the inconsistency between source and target images was low, whereas DANN has the best classification performance when the inconsistency between source and target images was high. Therefore, the extent to which data distributions of the source and target images match should be considered to select the best unsupervised domain adaptation model to generate reliable classification results.

Speaker Adaptation Using Neural Network in Continuous Speech Recognition (연속 음성에서의 신경회로망을 이용한 화자 적응)

  • 김선일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.11-15
    • /
    • 2000
  • Speaker adaptive continuous speech recognition for the RM speech corpus is described in this paper. Learning of hidden markov models for the reference speaker is performed for the training data of RM corpus. For the evaluation, evaluation data of RM corpus are used. Parts of another training data of RM corpus are used for the speaker adaptation. After dynamic time warping of another speaker's data for the reference data is accomplished, error back propagation neural network is used to transform the spectrum between speakers to be recognized and reference speaker. Experimental results to get the best adaptation by tuning the neural network are described. The recognition ratio after adaptation is substantially increased 2.1 times for the word recognition and 4.7 times for the word accuracy for the best.

  • PDF

Model adaptation employing DNN-based estimation of noise corruption function for noise-robust speech recognition (잡음 환경 음성 인식을 위한 심층 신경망 기반의 잡음 오염 함수 예측을 통한 음향 모델 적응 기법)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.47-50
    • /
    • 2019
  • This paper proposes an acoustic model adaptation method for effective speech recognition in noisy environments. In the proposed algorithm, the noise corruption function is estimated employing DNN (Deep Neural Network), and the function is applied to the model parameter estimation. The experimental results using the Aurora 2.0 framework and database demonstrate that the proposed model adaptation method shows more effective in known and unknown noisy environments compared to the conventional methods. In particular, the experiments of the unknown environments show 15.87 % of relative improvement in the average of WER (Word Error Rate).

Tiltrotor Attitude Control Using L1 Adaptive Controller (L1 적응제어기법을 이용한 틸트로터기의 자세제어)

  • Kim, Nak-Wan;Kim, Byoung-Soo;Yoo, Chang-Sun;Kang, Young-Sin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1226-1231
    • /
    • 2008
  • A design of attitude controller for a tiltrotor is presented augmenting L1 adaptive control, neural networks, and feedback linearization. The neural networks compensate for the modeling error caused by the lack of knowledge of tiltrotor dynamics while the L1 adaptive control allows high adaptation gains in adaptation laws thereby, satisfying tracking performance requirement. The efficacy of this control methodology is illustrated in high-fidelity nonlinear simulation of a tiltrotor by flying the tiltrotor in different flight modes from where the L1 adaptive controller with neural networks is originally designed for.