• 제목/요약/키워드: Neural Networks

검색결과 4,844건 처리시간 0.03초

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.

영상 잡음 제거 필터를 위한 퍼지 순환 신경망 연구 (A study on the Fuzzy Recurrent Neural Networks for the image noise elimination filter)

  • 변오성
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.61-70
    • /
    • 2011
  • 본 논문은 퍼지를 적용한 순환 신경망을 이용하여 잡음 제거용 필터를 구현하였다. 제안된 퍼지 순환 신경망 구조는 기본적으로 순환 신경망 구조를 이용하여 가중치 및 반복횟수가 일정한 값에 수렴하도록 하였으며, 하이브리드 퍼지 소속 함수 연산자를 적용하여 수학적인 계산량 및 복잡성를 단순화하였다. 본 논문은 제안된 퍼지 순환 신경망 구조 필터가 일반적인 순환 신경망 구조 필터보다 평균 0.38dB 정도 영상복원이 개선됨을 PSNR을 이용하여 증명하였다. 또한 결과 영상 비교에서 제안된 방법을 적용하여 얻은 영상이 기존 방법을 적용하여 얻은 영상보다 원영상과 더 유사함을 확인하였다.

다중 인공 신경망의 Federated Architecture와 그 응용-선박 중앙단면 형상 설계를 중심으로 (Federated Architecture of Multiple Neural Networks : A Case Study on the Configuration Design of Midship Structure)

  • 이경호;연윤석
    • 한국CDE학회논문집
    • /
    • 제2권2호
    • /
    • pp.77-84
    • /
    • 1997
  • This paper is concerning the development of multiple neural networks system of problem domains where the complete input space can be decomposed into several different regions, and these are known prior to training neural networks. We will adopt oblique decision tree to represent the divided input space and sel ect an appropriate subnetworks, each of which is trained over a different region of input space. The overall architecture of multiple neural networks system, called the federated architecture, consists of a facilitator, normal subnetworks, and tile networks. The role of a facilitator is to choose the subnetwork that is suitable for the given input data using information obtained from decision tree. However, if input data is close enough to the boundaries of regions, there is a large possibility of selecting the invalid subnetwork due to the incorrect prediction of decision tree. When such a situation is encountered, the facilitator selects a tile network that is trained closely to the boundaries of partitioned input space, instead of a normal subnetwork. In this way, it is possible to reduce the large error of neural networks at zones close to borders of regions. The validation of our approach is examined and verified by applying the federated neural networks system to the configuration design of a midship structure.

  • PDF

연기입자의 광학적 특성과 신경망을 이용한 화원분석에 대한 연구 (A Study on the Fire Sources Analysis Using the Optical Characteristics of Smoke Particles and Neural Networks)

  • 지승욱
    • 한국화재소방학회논문지
    • /
    • 제28권5호
    • /
    • pp.64-70
    • /
    • 2014
  • 신경망은 연기입자의 광학적 특징으로부터 화원을 분석할 수 있는 유용한 도구가 될 수 있다. UL268에서 연기감지기 시험에 사용되는 세 가지 화원(종이화원, 목재화원, 인화성 액체화원)들의 광학적 특징으로 신경망을 훈련시켰다. 또한, 소광과 산란을 동시에 측정할 수 있는 연기챔버를 제작하여 연기의 광학적 특징을 얻고 그 결과를 신경망에 입력하였다. 종이화원, 목재화원, 인화성 액체화원을 대상으로 한 실험에서 신경망은 화원을 정확하게 구별하였다. 또한, 종이-목재화원, 종이-인화성 액체화원, 목재-인화성 액체화원과 같은 복합화원을 대상으로 한 실험에서도 화원을 모두 구별하였다.

인공신경망을 이용한 평면파괴 안정성 예측 (A Prediction of the Plane Failure Stability Using Artificial Neural Networks)

  • 김방식;이성기;서재영;김광명
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.513-520
    • /
    • 2002
  • The stability analysis of rock slope can be predicted using a suitable field data but it cannot be predicted unless suitable field data was taken. In this study, artificial neural networks theory is applied to predict plane failure that has a few data. It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basis of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully In this study, error back-propagation algorithm that is one of the teaching techniques of artificial neural networks is applied to predict plane failure. In order to verify the applicability of this model, a total of 30 field data results are used. These data are used for training the artificial neural network model and compared between the predicted and the measured. The simulation results show the potentiality of utilizing the neural networks for effective safety factor prediction of plane failure. In conclusion, the well-trained artificial neural network model could be applied to predict the plane failure stability of rock slope.

  • PDF

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

신경망을 이용한 제어기에 인가된 입력 신호의 추정 (Input Signal Estimation About Controller Using Neural Networks)

  • 손준혁;서보혁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권8호
    • /
    • pp.495-497
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

신경망을 이용한 제어기에 인가된 입력 신호의 추정 (Input signal estimation about controller using neural networks)

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.18-20
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

  • PDF

신경망을 이용한 PID 제어기 이득값 적용에 대한 수렴 속도 향상 (Convergence Progress about Applied Gain of PID Controller using Neural Networks)

  • 손준혁;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.89-91
    • /
    • 2004
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal is convergence speed progress about applied gain of PID controller using the neural networks.

  • PDF

스윗칭회로의 경로설정을 위한 신경 회로망 연구 (A Study on Neural Network for Path Searching in Switching Network)

  • 박승규;이노성;우광방
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.432-435
    • /
    • 1990
  • Neural networks are a class of systems that have many simple processors (neurons) which are highly interconnected. The function of each neuron is simple, and the behavior is determined predominately by the set of interconnections. Thus, a neural network is a special form of parallel computer. Although major impetus for using neural networks is that they may be able to "learn" the solution to the problem that they are to solve, we argue that another, perhaps even stronger, impetus is that they provide a framework for designing massively parallel machines. The highly interconnected architecture of switching networks suggests similarities to neural networks. Here, we present switching applications in which neural networks can solve the problems efficiently. We also show that a computational advantage can be gained by using nonuniform time delays in the network.

  • PDF