• Title/Summary/Keyword: Neural NetworkOperating Condition

Search Result 65, Processing Time 0.021 seconds

Maximum Torque Control of SynRM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.155-157
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive learning mechanism-fuzzy neural network(ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Performance Analysis and Experimental Verification of Buck Converter fed DC Series Motor using Hybrid Intelligent Controller with Stability Analysis and Parameter Variations

  • Thangaraju, I.;Muruganandam, M.;Madheswaran, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.518-528
    • /
    • 2015
  • This article presents a closed loop control of DC series motor fed by DC chopper controlled by an PID controller based intelligent control using ANN (Artificial Neural Network). The PID-ANN controller performances are analyzed in both steady state and dynamic operating condition with various set speed and various load torque. Here two different motor parameters are taken for analysis (220V and 110V motor parameters). The static and dynamic performances are taken for comparison with conventional PID controller and existing work. The steady state stability analysis of the system also made using the transfer function model. The equation model is also done to analysis the performances by set speed change and load torque change. The proposed controller have better control over the conventional PID controller and the reported existing work. This system is initially simulated using MATLAB / Simulink and then experimental setup done using P89V51RD2BN microcontroller.

Maximum Torque Control of SynRM Drive with Adaptive FNN Controller (적응 FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.729-730
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive fuzzy neural network(A-FNN) controller and artificial neural network(ANN). For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled A-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the A-FNN and ANN controller.

  • PDF

Maximum Torque Control of IPMSM Drive with ALM-FNN (ALM-FNN에 의한 IPMSM 드라이브의 최대토크 제어)

  • Lee, Jung-Ho;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Jong-Kwan;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.731-732
    • /
    • 2006
  • The paper is proposed maximum torque control of IPMSM drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and artificial neural network(ANN). For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN.

  • PDF

Maximum Torque Control of IPMSM using ALM-FNN and MFC Controller (ALM-FNN 및 MFC 제어기를 이용한 IPMSM 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.26-28
    • /
    • 2009
  • This paper proposes maximum torque control of IPMSM drive using adaptive teaming mechanism-fuzzy neural network (ALM-FNN) controller, model reference adaptive fuzzy tonal(MFC) and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using ALM-FNN, MFC and ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN, MFC and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, MFC and ANN controller.

  • PDF

Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation (야지 자율주행을 위한 환경에 강인한 지형분류 기법)

  • Sung, Gi-Yeul;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

Maximum Torque Control of IPMSM with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM의 최대토크 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.198-201
    • /
    • 2005
  • The paper is proposed maximum torque control of IPMSM drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verily the effectiveness of the ALM-FNN and ANN controller.

  • PDF

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

A Prediction Triage System for Emergency Department During Hajj Period using Machine Learning Models

  • Huda N. Alhazmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.11-23
    • /
    • 2024
  • Triage is a practice of accurately prioritizing patients in emergency department (ED) based on their medical condition to provide them with proper treatment service. The variation in triage assessment among medical staff can cause mis-triage which affect the patients negatively. Developing ED triage system based on machine learning (ML) techniques can lead to accurate and efficient triage outcomes. This study aspires to develop a triage system using machine learning techniques to predict ED triage levels using patients' information. We conducted a retrospective study using Security Forces Hospital ED data, from 2021 through 2023 during Hajj period in Saudia Arabi. Using demographics, vital signs, and chief complaints as predictors, two machine learning models were investigated, naming gradient boosted decision tree (XGB) and deep neural network (DNN). The models were trained to predict ED triage levels and their predictive performance was evaluated using area under the receiver operating characteristic curve (AUC) and confusion matrix. A total of 11,584 ED visits were collected and used in this study. XGB and DNN models exhibit high abilities in the predicting performance with AUC-ROC scores 0.85 and 0.82, respectively. Compared to the traditional approach, our proposed system demonstrated better performance and can be implemented in real-world clinical settings. Utilizing ML applications can power the triage decision-making, clinical care, and resource utilization.

Controller Transition Management of Hybrid Position Control System for Unmanned Expedition Vehicles (무인탐사차량의 위치제어를 위한 복합제어 시스템의 제어기 전이관리)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.969-976
    • /
    • 2008
  • A position control problem is studied for UEV(Unmanned Expedition Vehicles), which is to follow pre-determined paths via fixed way-points. Hybrid control systems are used for position control of UEV depending on the operating condition. Speed control consists of three controllers: PID control, adaptive PI control, and neural network. Heading control consists of two controllers, PID and adaptive PID control. The controllers are selected based on the changes of road conditions. We suggest an adaptive PI control algorithm for speed control and an transition management algorithm among the controllers. The algorithm adapts the road conditions and variation of vehicle dynamical characteristics and selects a suitable controller.