• 제목/요약/키워드: Neural Network. Clustering

검색결과 318건 처리시간 0.023초

Unification of Kohonen Neural network with the Branch-and-Bound Algorithm in Pattern Clustering

  • Park, Chang-Mok;Wang, Gi-Nam
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.134-138
    • /
    • 1998
  • Unification of Kohone SOM(Self-Organizing Maps) neural network with the branch-and-bound algorithm is presented for clustering large set of patterns. The branch-and-bound search technique is employed for designing coarse neural network learning paradaim. Those unification can be use for clustering or calssfication of large patterns. For classfication purposes further usefulness is possible, since only two clusters exists in the SOM neural network of each nodes. The result of experiments show the fast learning time, the fast recognition time and the compactness of clustering.

  • PDF

Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화 (Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network)

  • 박동철;김우성
    • 한국통신학회논문지
    • /
    • 제31권9C호
    • /
    • pp.853-858
    • /
    • 2006
  • 음성인식에서 TMHMM(Tied Mixture Hidden Markov Model)은 자유 매개변수의 수를 감소시키기 위한 좋은 접근이지만, GPDF(Gaussian Probability Density Function) 군집화 오류에 의해 음성인식의 오류를 발생시켰다. 본 논문은 TMHMM에서 발생하는 군집화 오류를 최소화하기 위하여 HCNN(Homogeneous Centroid Neural Network) 군집화 알고리즘을 제안한다. 제안된 알고리즘은 CNN(Centroid Neural Network)을 TMHMM상의 음향 특징벡터에 활용하였으며, 다른 상태에 소속된 확률밀도가 서로 겹쳐진 형태의 이질군집 지역에 더 많은 코드벡터를 할당하기 위해서 본 논문에서 새로 제안이 제안되는 이질성 거리척도를 사용 하였다. 제안된 알고리즘을 한국어 고립 숫자단어의 인식문제에 적용한 결과, 기존 K-means 알고리즘이나 CNN보다 각각 14.63%, 9,39%의 오인식률의 감소를 얻을 수 있었다.

패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델 (IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정 (Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering)

  • 최정내;오성권;김현기
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.69-76
    • /
    • 2008
  • 본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.

  • PDF

Subtractive Clustering 알고리즘을 이용한 퍼지 RBF 뉴럴네트워크의 동정 (Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.239-240
    • /
    • 2008
  • 본 논문에서는 Subtractive clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network (FRBFNN)의 규칙 수를 자동적으로 생성하는 방법을 제시한다. FRBFNN은 멤버쉽 함수로써 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 Fuzzy C-Means clustering 알고리즘에서 사용하는 거리에 기한 멤버쉽 함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정하는 구조이다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 하는 Subtractive clustering 알고리즘을 사용하여 퍼지 규칙의 수와 같은 의미를 갖는 분할할 입력공간의 수와 분할된 입력공간의 중심값을 동정하며, Least Square Estimator (LSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정 한다.

  • PDF

Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

  • Lee, J.P.;Lee, D.J.;Kim, S.S.;Ji, P.S.;Lim, J.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.157-164
    • /
    • 2007
  • Diagnosis techniques based on the dissolved gas analysis(DGA) have been developed to detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger, Dornenburg, and etc. However, these methods have been applied to different problems with different standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy clustering and a radial basis neural network(RBFNN). In the neural network, fuzzy clustering is effective for selecting the efficient training data and reducing learning process time. After fuzzy clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer. The proposed method measures the possibility and degree of aging as well as the faults occurred in the transformer. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

코호넨의 자기조직화 구조를 이용한 클러스터링 망에 관한 연구 (On the Clustering Networks using the Kohonen's Elf-Organization Architecture)

  • 이지영
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.119-124
    • /
    • 2005
  • Learning procedure in the neural network is updating of weights between neurons. Unadequate initial learning coefficient causes excessive iterations of learning process or incorrect learning results and degrades learning efficiency. In this paper, adaptive learning algorithm is proposed to increase the efficient in the learning algorithms of Kohonens Self-Organization Neural networks. The algorithm updates the weights adaptively when learning procedure runs. To prove the efficiency the algorithm is experimented to clustering of the random weight. The result shows improved learning rate about 42~55% ; less iteration counts with correct answer.

  • PDF

신경망의 결정론적 이완에 의한 자기공명영상 분류 (Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • 제6권2호
    • /
    • pp.137-146
    • /
    • 2002
  • 목적: 본 논문에서는 신경망을 이용한 자기공명영상의 분류에 있어 결정론적 이완 방법(deterministic relaxation)과 응집 군집화(agglomerative clustering) 방법에 의한 개선된 영상 분류방법을 제시한다. 제안된 방법은 신경망을 이용한 영상의 분류시 지역적 최소치로의 수렴문제와 입력 패턴의 증대로 인하여 수렴 속가 늦어지는 문제를 해결한다. 대상 및 방법: 신경망을 이용한 영상의 분류는 지역적 계산과 병렬 계산이 가능한 특성을 갖고 있어 기존의 통계적 방법을 대신하는 방법으로 주목을 받고 있다. 그러나 일반적으로 신경망에 의한 분류알고리즘이 지닌 문제점의 하나는 에너지함수가 항상 전역적 최소치로 수렴하지 않고 지역적 최소치로도 수렴할 수 있다는 점이고, 또 다른 문제점은 반복수렴을 수행하는 에너지함수의 수렴속도가 너무 늦다는 점이다. 따라서 지역적 최소치로의 수렴을 방지하고 전역적 최소치로의 수렴속도를 가속화시키기 위하여 본 논문에서는 결정적 이완 알고리즘의 하나인 MFA(Mean Field Annealing) 방법을 적용하여 지역적 최소치로의 수렴문제를 해결하는 방법을 제시한다. MFA는 모의 애닐링의 통계적 성질을 변수의 평균값에 적용하는 결정론적인 수정 법칙들로 대신하고, 이러한 평균값을 최소화함으로서 수렴속도를 개선한 방법이다 아울러 신경망이 갖고 있는 문제점인 과다한 클래스 패턴의 생성에 따른 처리속도 지연의 문제점을 해결하기 위하여 응집 군집화 알고리즘을 이용하여 영상을 구성하는 군집을 결정하여 신경망에 입력되는 값을 초기화하여 영상패턴이 증가되는 것을 제한하였다. 결과: 본 논문에서 제시된 응집 군집화 방법 및 결정론적 이완 방법은 신경망에 의한 자기공명영상의 분류 시 발생할 수 있는 지역적 최적 치로의 수렴 문제를 해결하여 전역적 최적화로 신속히 수렴함을 알 수 있었다. 결론: 본 논문에서는 클러스터의 분석과 결정론적 이완 방법에 의하여 신경망에 의한 자기공명영상의 분류결과를 향상시키기 위한 새로운 방법을 소개하였으며 실험결과를 통하여 그러한 사실을 확인할 수 있었다.

  • PDF

K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식 (Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network)

  • 박정국;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.