• Title/Summary/Keyword: Neural Network-based

Search Result 5,628, Processing Time 0.037 seconds

A Case Study of Rainfall-Induced Slope Failures on the Effect of Unsaturated Soil Characteristics (불포화 지반특성 영향에 대한 강우시 사면붕괴의 사례 연구)

  • Oh, Seboong;Mun, Jong-Ho;Kim, Tae-Kyung;Kim, Yun Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.167-178
    • /
    • 2008
  • Rainfall-induced slope failures were simulated by seepage and stability analyses for actual slopes of weathered soils. After undisturbed sampling and testing on a specimen of unsaturated conditions, a seepage analysis was performed under actual rainfall and it was found that the pore water pressure increased at the boundary of soil and rock layers. The safety factor of slope stability decreased below 1.0 and the failure of actual slope could be simulated. Under design rainfall intensity, the seepage analysis could not include the effects of the antecedent rainfall and the rainfall duration. Due to these limitations, the safety factor of slope stability resulted in above 1.0, since the hydraulic head of soil layers had not be affected significantly. In the analysis of another slope failure, the parameters of unsaturated conditions were evaluated using artificial neural network (ANN). In the analysis of seepage, the boundary of soil and rock was saturated sufficiently and then the safety factor could be calculated below 1.0. It was found that the failure of actual slope can be simulated by ANN-based estimation.

A Study on the Effective Selection of Tunnel Reinforcement Methods using Decision Tree Technique (의사결정트리 기법을 이용한 터널 보조공법 선정방안 연구)

  • Kim, Jong-Gyu;Sagong, Myung;Lee, Jun S.;Lee, Yong-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.255-264
    • /
    • 2006
  • The auxiliary reinforcement method is normally applied to prevent a possible collapse of the tunnel face where the ground condition is not favorable or geologic information is not sufficient. Recently, several engineering approaches have been made to choose the effective reinforcement methods using expert system such as neural network and fuzzy theory field, among others. Even if the expert system has offered many decision aid tools to properly select the reinforcement method, the quantitative assessment items are not easy to estimate and this is why the data mining technique, widely used in the field of social science, medical treatment, banking and agriculture, is introduced in this study. Using decision tree together with PDA, the decision aids for reinforcement method based on field construction data are created to derive the field rules and future study will be concentrated on the application of the proposed methods in a variety of underground development cases.

RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC (RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델)

  • Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.28-35
    • /
    • 2023
  • In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.

Big Data using Artificial Intelligence CNN on Unstructured Financial Data (비정형 금융 데이터에 관한 인공지능 CNN 활용 빅데이터 연구)

  • Ko, Young-Bong;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.232-234
    • /
    • 2022
  • Big data is widely used in customer relationship management, relationship marketing, financial business improvement, credit information and risk management. Moreover, as non-face-to-face financial transactions have become more active recently due to the COVID-19 virus, the use of financial big data is more demanded in terms of relationships with customers. In terms of customer relationship, financial big data has arrived at a time that requires an emotional rather than a technical approach. In relational marketing, it was necessary to emphasize the emotional aspect rather than the cognitive, rational, and rational aspects. Existing traditional financial data was collected and utilized through text-type customer transaction data, corporate financial information, and questionnaires. In this study, the customer's emotional image data, that is, atypical data based on the customer's cultural and leisure activities, is acquired through SNS and the customer's activity image is analyzed with an artificial intelligence CNN algorithm. Activity analysis is again applied to the annotated AI, and the AI big data model is designed to analyze the behavior model shown in the annotation.

  • PDF

Identification of Void Diameters for Cast-Resin Transformers (몰드변압기의 보이드 결함 크기 판별)

  • Jeong, Gi-woo;Kim, Wook-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.570-573
    • /
    • 2022
  • This paper presents the identification of void diameters for a cast-resin transformer using an artificial neural network (ANN) model. A PD signal was measured by the Rogowski coil sensor which has the planar and thin structures fabricated on a printed circuit board (PCB), and the PD electrode system was fabricated to simulate a PD defect by a void. In addition, void samples with different diameters were fabricated by injecting air in a cylindrical aluminum frame using a syringe during the epoxy curing process. To identify the diameter of void defects, PD characteristics such as the discharge magnitude, pulse count, and phase angle were extracted and back propagation algorithm (BPA) was designed using virtual instrument (VI) based on the Labview program. From the experimental results, the BPA algorithm proposed in this paper has over 90% accurate rate to identify the diameter of void defects and is expected to use reference data of maintenance and replacement of insulation for cast-resin transformers in the on-site PD measurement.

  • PDF

The effect of rubber bumper in order to suggest a new equation to calculate damping ratio, subjected building pounding during seismic excitation

  • Khatami, S.M.;Naderpour, H.;Mortezaei, A.R.;Barros, R.C.;Maddah, M.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2022
  • One of the objectives to prevent building pounding between two adjacentstructures is to considerseparation distance or decrease relative displacement during seismic excitation. Although the majority of building codes around the world have basically suggested some equations or approximately recommended various distances between structuresto avoid pounding hazard, but a lot of reportsin zone of pounding have obviously shown thatsafety situation or economic consideration are not always provided due to the collisions between buildings and the cost of land, respectively. For this purpose, a dynamic MDOF model by having base isolation system is numerically considered and using various earthquake records, relative displacements are mathematically investigated. Different equations to determine the value of damping ratio are collected and the results of evaluations are listed for comparison among them to present a new equation for determination of impact damping ratio. Presented equation is depends significantly on impact velocity before and after impact based on artificial neural network, which the accuracy of them is investigated and also confirmed. In order to select the optimum equation, hysteresisloop of impact between base of building and rubber bumper is considered and compared with the hysteresis loop of each impact, calculated by different equations. Finally, using representative equation, the effect of thickness, number and stiffness of rubber bumpers are numerically investigated. The results of analysis indicate that stiffness and number of bumpers have significantly affected in zone of impact force while the thickness of bumpers have not shown significant influence to calculate impact force during earthquake. For instance, increasing the number of bumpers, gap size between structures and also the value of stiffness is caused to decrease impact force between models. The final evaluation demonstrates that bumpers are able to decrease peak lateral displacement of top story during impact.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

The Study on Effect of sEMG Sampling Frequency on Learning Performance in CNN based Finger Number Recognition (CNN 기반 한국 숫자지화 인식 응용에서 표면근전도 샘플링 주파수가 학습 성능에 미치는 영향에 관한 연구)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.51-56
    • /
    • 2023
  • This study investigates the effect of sEMG sampling frequency on CNN learning performance at Korean finger number recognition application. Since the bigger sampling frequency of sEMG signals generates bigger size of input data and takes longer CNN's learning time. It makes making real-time system implementation more difficult and more costly. Thus, there might be appropriate sampling frequency when collecting sEMG signals. To this end, this work choose five different sampling frequencies which are 1,024Hz, 512Hz, 256Hz, 128Hz and 64Hz and investigates CNN learning performance with sEMG data taken at each sampling frequency. The comparative study shows that all CNN recognized Korean finger number one to five at the accuracy of 100% and CNN with sEMG signals collected at 256Hz sampling frequency takes the shortest learning time to reach the epoch at which korean finger number gestures are recognized at the accuracy of 100%.

Accident Detection System for Construction Sites Using Multiple Cameras and Object Detection (다중 카메라와 객체 탐지를 활용한 건설 현장 사고 감지 시스템)

  • Min hyung Kim;Min sung Kam;Ho sung Ryu;Jun hyeok Park;Min soo Jeon;Hyeong woo Choi;Jun-Ki Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.605-611
    • /
    • 2023
  • Accidents at construction sites have a very high rate of fatalities due to the nature of being prone to severe injury patients. In order to reduce the mortality rate of severely injury patients, quick response is required, and some systems that detect accidents using AI technology and cameras have been devised to respond quickly to accidents. However, since existing accident detection systems use only a single camera, there are blind spots, Thus, they cannot detect all accidents at a construction site. Therefore, in this paper, we present the system that minimizes the detection blind spot by using multiple cameras. Our implemented system extracts feature points from the images of multiple cameras with the YOLO-pose library, and inputs the extracted feature points to a Long Short Term Memory-based recurrent neural network in order to detect accidents. In our experimental result, we confirme that the proposed system shows high accuracy while minimizing detection blind spots by using multiple cameras.

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.