• Title/Summary/Keyword: Neural Network-based

Search Result 5,631, Processing Time 0.039 seconds

Video Camera Model Identification System Using Deep Learning (딥 러닝을 이용한 비디오 카메라 모델 판별 시스템)

  • Kim, Dong-Hyun;Lee, Soo-Hyeon;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.1-9
    • /
    • 2019
  • With the development of imaging information communication technology in modern society, imaging acquisition and mass production technology have developed rapidly. However, crime rates using these technology are increased and forensic studies are conducted to prevent it. Identification techniques for image acquisition devices are studied a lot, but the field is limited to images. In this paper, camera model identification technique for video, not image is proposed. We analyzed video frames using the trained model with images. Through training and analysis by considering the frame characteristics of video, we showed the superiority of the model using the P frame. Then, we presented a video camera model identification system by applying a majority-based decision algorithm. In the experiment using 5 video camera models, we obtained maximum 96.18% accuracy for each frame identification and the proposed video camera model identification system achieved 100% identification rate for each camera model.

Improving Multi-DNN Computational Performance of Embedded Multicore Processors through a Global Queue (글로벌 큐를 통한 임베디드 멀티코어 프로세서의 멀티 DNN 연산 성능 향상)

  • Cho, Ho-jin;Kim, Myung-sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.714-721
    • /
    • 2020
  • DNN is expanding its use in embedded systems such as robots and autonomous vehicles. For high recognition accuracy, computational complexity is greatly increased, and multiple DNNs are running aperiodically. Therefore, the ability processing multiple DNNs in embedded environments is a crucial issue. Accordingly, multicore based platforms are being released. However, most DNN models are operated in a batch process, and when multiple DNNs are operated in multicore together, the execution time deviation between each DNN may be large and the end-to-end execution time of the whole DNNs could be long depending on how they are allocated to the cores. In this paper, we solve these problems by providing a framework that decompose each DNN into individual layers and then distribute to multicores through a global queue. As a result of the experiment, the total DNN execution time was reduced by 31%, and when operating multiple identical DNNs, the deviation in execution time was reduced by up to 95.1%.

Design of YOLO-based Removable System for Pet Monitoring (반려동물 모니터링을 위한 YOLO 기반의 이동식 시스템 설계)

  • Lee, Min-Hye;Kang, Jun-Young;Lim, Soon-Ja
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • Recently, as the number of households raising pets increases due to the increase of single households, there is a need for a system for monitoring the status or behavior of pets. There are regional limitations in the monitoring of pets using domestic CCTVs, which requires a large number of CCTVs or restricts the behavior of pets. In this paper, we propose a mobile system for detecting and tracking cats using deep learning to solve the regional limitations of pet monitoring. We use YOLO (You Look Only Once), an object detection neural network model, to learn the characteristics of pets and apply them to Raspberry Pi to track objects detected in an image. We have designed a mobile monitoring system that connects Raspberry Pi and a laptop via wireless LAN and can check the movement and condition of cats in real time.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Detection Algorithm of Road Surface Damage Using Adversarial Learning (적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.95-105
    • /
    • 2021
  • Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

Emotional Expression Technique using Facial Recognition in User Review (사용자 리뷰에서 표정 인식을 이용한 감정 표현 기법)

  • Choi, Wongwan;Hwang, Mansoo;Kim, Neunghoe
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.23-28
    • /
    • 2022
  • Today, the online market has grown rapidly due to the development of digital platforms and the pandemic situation. Therefore, unlike the existing offline market, the distinctiveness of the online market has prompted users to check online reviews. It has been established that reviews play a significant part in influencing the user's purchase intention through precedents of several studies. However, the current review writing method makes it difficult for other users to understand the writer's emotions by expressing them through elements like tone and words. If the writer also wanted to emphasize something, it was very cumbersome to thicken the parts or change the colors to reflect their emotions. Therefore, in this paper, we propose a technique to check the user's emotions through facial expression recognition using a camera, to automatically set colors for each emotion using research on existing emotions and colors, and give colors based on the user's intention.

Machine Learning-based Process Condition Selection Method to Prevent Defects in Korean Traditional Brass Casting (한국 전통 유기 제작에서 결함을 방지하기 위한 기계 학습 기반의 공정 조건 선택 방안)

  • Lee, Seungcheol;Han, Dosuck;Yi, Hyuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In the present study, in order to prevent the misrun defects that occur during traditional brass casting, a method for selecting the proper casting process conditions is proposed. A learning model was developed and demonstrated to be able to learn the presence or absence of defects according to the casting process conditions and to predict the occurrence of defects depending on the certain process given. Appropriate process conditions were determined by applying the proposed method, and the determined conditions were verified through a comparison of different simulation results with additional conditions. With this method, it is possible to determine the casting process conditions that will prevent defects in the desired sand model. This technology is expected to contribute to realization of smart traditional brass farming workshops.

Malaria Cell Image Recognition Based On VGG19 Using Transfer Learning (전이 학습을 이용한 VGG19 기반 말라리아셀 이미지 인식)

  • Peng, Xiangshen;Kim, Kangchul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.483-490
    • /
    • 2022
  • Malaria is a disease caused by a parasite and it is prevalent in all over the world. The usual method used to recognize malaria cells is a thick and thin blood smears examination methods, but this method requires a lot of manual calculation, so the efficiency and accuracy are very low as well as the lack of pathologists in impoverished country has led to high malaria mortality rates. In this paper, a malaria cell image recognition model using transfer learning is proposed, which consists in the feature extractor, the residual structure and the fully connected layers. When the pre-training parameters of the VGG-19 model are imported to the proposed model, the parameters of some convolutional layers model are frozen and the fine-tuning method is used to fit the data for the model. Also we implement another malaria cell recognition model without residual structure to compare with the proposed model. The simulation results shows that the model using the residual structure gets better performance than the other model without residual structure and the proposed model has the best accuracy of 97.33% compared to other recent papers.