• Title/Summary/Keyword: Neural Network-based

Search Result 5,700, Processing Time 0.034 seconds

Neural Network Compensation for Improvement of Real-Time Moving Object Tracking Performance of the ROBOKER Head with a Virtual Link (가상링크 기반의 ROBOKER 머리의 실시간 대상체 추종 성능 향상을 위한 신경망 제어)

  • Kim, Dong-Min;Choi, Ho-Jin;Lee, Geun-Hyung;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.694-699
    • /
    • 2009
  • This paper presents the implementation of the real-time object tracking control of the ROBOKER head. The visual servoing technique is used to track the moving object, but suffers from ill-estimated Jacobian of the virtual link design. To improve the tracking performance, the RBF(Radial Basis Function) network is used to compensate for uncertainties in the kinematics of the robot head in on-line fashion. The reference compensation technique is employed as a neural network control scheme. Performances of three schemes, the kinematic based scheme, the Jacobian based scheme, and the neural network compensation scheme are verified by experimental studies. The neural compensation scheme performs best.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

Estimation of Environmental Costs Based on Size of Oil Tanker Involved in Accident using Neural Network (신경망을 이용한 유조선 기름 유출사고에 따른 환경비용 추정에 관한 연구)

  • Shin, Sung-Chul;Bae, Jeong-Hoon;Kim, Hyun-Soo;Kim, Seong-Hoon;Kim, Soo-Young;Lee, Jong-Kap
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.60-63
    • /
    • 2012
  • The accident risks in the marine environment are increasing because of the tendency to build faster and larger ships. To secure ship safety, risk-based ship design (RBSD) was recently suggested based on a formal safety assessment (FSA). In the process of RBSD, a ship designer decides which risk reduction option is most cost-effective in the design stage using a cost-benefit analysis (CBA). There are three dimensions of risk in this CBA: fatality, environment, and asset. In this paper, we present an approach to estimate the environmental costs based on the size of an oil tanker involved in an accident using a neural network. An appropriate neural network model is suggested for the estimation,and the neural network is trained using IOPCF data. Finally,the learned neural network is compared with the cost regression equation by IMO MEPC 62/WP.13 (2011).

Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design (Network 분석과 신경망을 이용한 Cellular 생산시스템 설계)

  • Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Design of Fuzzy Relation-based Fuzzy Neural Networks with Multi-Output and Its Optimization (다중 출력을 가지는 퍼지 관계 기반 퍼지뉴럴네트워크 설계 및 최적화)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.832-839
    • /
    • 2009
  • In this paper, we introduce an design of fuzzy relation-based fuzzy neural networks with multi-output. Fuzzy relation-based fuzzy neural networks comprise the network structure generated by dividing the entire input space. The premise part of the fuzzy rules of the network reflects the relation of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions such as constant, linear, and modified quadratic. For the multi-output structure the neurons in the output layer were connected with connection weights. The learning of fuzzy neural networks is realized by adjusting connections of the neurons both in the consequent part of the fuzzy rules and in the output layer, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, learning rate and momentum coefficient are automatically optimized by using real-coded genetic algorithm. Two examples are included to evaluate the performance of the proposed network.

Cast-Shadow Elimination of Vehicle Objects Using Backpropagation Neural Network (신경망을 이용한 차량 객체의 그림자 제거)

  • Jeong, Sung-Hwan;Lee, Jun-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 2008
  • The moving object tracking in vision based observation using video uses difference method between GMM(Gaussian Mixture Model) based background and present image. In the case of racking object using binary image made by threshold, the object is merged not by object information but by Cast-Shadow. This paper proposed the method that eliminates Cast-Shadow using backpropagation Neural Network. The neural network is trained by abstracting feature value form training image of object range in 10-movies and Cast-Shadow range. The method eliminating Cast-Shadow is based on the method distinguishing shadow from binary image, its Performance is better(16.2%, 38.2%, 28.1%, 22.3%, 44.4%) than existing Cast-Shadow elimination algorithm(SNP, SP, DNM1, DNM2, CNCC).

  • PDF

Neural Network-Based Sensor Fault Diagnosis in the Gas Monitoring System (가스모니터링 시스템에서의 신경회로망 기반 센서고장진단)

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we propose neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, ART2 neural network is used for fault isolation. The performance and effectiveness of the proposed ART2 neural network based fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

A Sound Interpolation Method Using Deep Neural Network for Virtual Reality Sound (가상현실 음향을 위한 심층신경망 기반 사운드 보간 기법)

  • Choi, Jaegyu;Choi, Seung Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.227-233
    • /
    • 2019
  • In this paper, we propose a deep neural network-based sound interpolation method for realizing virtual reality sound. Through this method, sound between two points is generated by using acoustic signals obtained from two points. Sound interpolation can be performed by statistical methods such as arithmetic mean or geometric mean, but this is insufficient to reflect actual nonlinear acoustic characteristics. In order to solve this problem, in this study, the sound interpolation is performed by training the deep neural network based on the acoustic signals of the two points and the target point, and the experimental results show that the deep neural network-based sound interpolation method is superior to the statistical methods.

Sensor Failure Detection and Accommodation Based on Neural Networks (신경회로망을 이용한 센서 고장진단 및 극복)

  • 이균정;이봉기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1998
  • This paper presents a neural networks based approach for the problem of sensor failure detection and accommodation for ship without physical redundancy in the sensors. The designed model consists of two neural networks. The first neural network is responsible for the failure detection and the second neural network is responsible for the failure identification and accommodation. On the yaw rate sensor of ship, simulation results indicates that the proposed method can be useful as failure detector and sensor estimator.

  • PDF