• Title/Summary/Keyword: Neural Network Theory

Search Result 373, Processing Time 0.022 seconds

The Roundness Prediction at Numerical Control Machine Using Neural Network (수치제어 공작기계에서 신경망을 이용한 진원도 예측)

  • Shin, Kwan-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.315-320
    • /
    • 2009
  • The purpose of this study is to predict the roundness of Numerical Control Machining so that helps the operator to choose the right machining conditions to produce a product within the given error limits. Learning of neural network is Backpropagation theory. From this study, the base was set to setup the database to produce precisely machined product by predicting the rate of error in the fabrication facility which does not have the environment to analyze it.

  • PDF

Design of Controller Utilizing Neural-Network (Neural Network를 이용한 제어기 설계)

  • Kim, Dae-Jong;Koo, Young-Mo;Chang, Seog-Ho;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.397-400
    • /
    • 1989
  • This study is to design a method of parameter estimation for a second order linear time invarient system of self-tuning controller utilizing the neural network theory proposed by Hopfield. The result is compared with the other methods which are commonly used in controller theories.

  • PDF

Usage of auxiliary variable and neural network in doubly robust estimation

  • Park, Hyeonah;Park, Wonjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.659-667
    • /
    • 2013
  • If the regression model or the propensity model is correct, the unbiasedness of the estimator using doubly robust imputation can be guaranteed. Using a neural network instead of a logistic regression model for the propensity model, the estimators using doubly robust imputation are approximately unbiased even though both assumed models fail. We also propose a doubly robust estimator of ratio form using population information of an auxiliary variable. We prove some properties of proposed theory by restricted simulations.

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

Study of Collective Synchronous Dynamics in a Neural Network Model

  • Cho, Myoung Won
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1385-1392
    • /
    • 2018
  • A network with coupled biological neurons provides various forms of collective synchronous dynamics. Such phase-locking dynamics states resemble eigenvectors in a linear coupling system in that the forms are determined by the symmetry of the coupling strengths. However, the states behave as attractors in a nonlinear dynamics system. We here study the collective synchronous dynamics in a neural system by using a novel theory. We exhibit how the period and the stability of individual phase-locking dynamics states are determined by the characteristics of synaptic couplings. We find that, contrary to common sense, the firing rate of a synchronized state decreases with increasing synaptic coupling strength.

Construction of System for Water Quality Forecasting at Dalchun Using Neural Network Model (신경망 모형을 이용한 달천의 수질예측 시스템 구축)

  • Lee, Won-ho;Jun, Kye-won;Kim, Jin-geuk;Yeon, In-sung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.305-314
    • /
    • 2007
  • Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Dalchun station in Han River. Input data is consist of monthly data of concentration of DO, BOD, COD, SS and river flow. And this study selected optimal neural network model through changing the number of hidden layer based on input layer(n) from n to 6n. After neural network theory is applied, the models go through training, calibration and verification. The result shows that the proposed model forecast water quality of high efficiency and developed web-based water quality forecasting system after extend model

An On-Line Adaptive Control of Underwater Vehicles Using Neural Network

  • Kim, Myung-Hyun;Kang, Sung-Won;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • All adaptive neural network controller has been developed for a model of an underwater vehicle. This controller combines a radial basis neural network and sliding mode control techniques. No prior off-line training phase is required, and this scheme exploits the advantages of both neural network control and sliding mode control. An on-line stable adaptive law is derived using Lyapunov theory. The number of neurons and the width of Gaussian function should be chosen carefully. Performance of the controller is demonstrated through computer simulation.

THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo;Hong, Bum Il
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.729-738
    • /
    • 2013
  • In this paper, we investigate a localized approximation of a continuously differentiable function by neural networks. To do this, we first approximate a continuously differentiable function by B-spline functions and then approximate B-spline functions by neural networks. Our proofs are constructive and we give numerical results to support our theory.

Computation of Noncentral T Probabilities using Neural Network Theory (신경망이론에 의한 비중심T분포 확률계산)

  • Gu, Son-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.177-183
    • /
    • 1997
  • The cumulative function of the noncentral t distribution calculate power in testing equality of means of two normal populations and confidence intervals for the ratio of population mean to standard deviation. In this paper, the evaluation of the cumulative function of noncentral t distribution is applied to the neural network consists of the multi-layer perception structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the Fisher's values and the results obtained by neural network theory.

  • PDF

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF