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An On-Line Adaptive Control of Underwater Vehicles
Using Neural Network

MYUNG-HYUN KiM*, SUNG-WON KANG* AND JAE-MYUNG LEE*
*Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Korea

KEY WORDS: Neural Network, Underwater Vehicles, Nonlinear Control, Gaussian Networks

ABSTRACT: An adaptive neural nefwork controller has been developed for a model of an underwater vehicle. This controller combines
a radial basis neural network and sliding mode control techniques. No prior off-line training phase is required, and this scheme exploits
ine advantages of both neural network control and sliding mode control. An on-line stable adaptive law is derived using Lyapunov
vieory. The nuniber of neurons and the width of Gaussian function should be chosen carefully. Performance of the controller is

i monstrated through computer simulation.

1. Introduction

Underwater robotic vehicles are useful tools to explore

The dynamics
vehicles are strongly nonlinear, coupled, time-varying, and

te ocean environment. of underwater
wncertain within the parameters. These facts make it difficult
t+ design a controller with good tracking performance.
Several different control approaches have been studied,
nicluding linear control (non-adaptive and adaptive), fuzzy
¢ontrol, neural networks and sliding mode control(Hills and
Yoerger, 1994). Among them, sliding mode control has been
with
vnderwater vehicles by several authors (Healey and Lienard,
1993). Sliding mode control is a model-based method that
can handle nonlinear and uncertain, time-varying systems. It

wsted and successfully implemented for use

aiso can be extended to include adaptive control, in order to
changes
configuration. However, it requires a good dynamic model

compensate  for in environment and vehicle
¢l the system, as well as knowledge of the inaccuracies and
vncertainties associated with the model.

Neural network controllers have important advantages,
v'hich can overcome the typical difficulties associated with
cesigning  control  systems for underwater vehicles. For
the of be

completely known, as a prior condition for controller design.

example, dynamics the wvehicle need not
tlso, the ability of these networks for adaptation and
cisturbance rejection, combined with their highly parallel
rature of computation, makes this approach suitable for

ral-time application.
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Application of neural network control to underwater
vehicles has been reported by several authors. Lee et al.
(2002) and Lee and Lee (1994) developed a neural net-based,
nonlinear adaptive controller for an autonomous underwater
vehicle. Yuh (1990) proposed the use of an on-line approach
of neural networks for underwater vehicle control, using
direct learning scheme. This approach showed good heading
control performance. Venugopal et al. (1992) tested several
different
long-range model predictive control, both in simulation and
for on-line control of wvehicle depth. Ishii et al. (1995)
proposed the use of a neural network-based control system

neural network architectures to evaluate a

to improve the time-consuming adaptation process.

Sanner et al, (1992} employed a network of Gaussian
radial basis functions to adaptively compensate for the plant
nonlinearities. This can be used as a direct adaptive
controller for a class of nonlinear dynamic systems, for
which an explicit linear parameterization of the uncertainties
in the dynamics is difficult.

In this paper, the use a neural network controller, in
combination with an adaptive sliding mode controller, is
network
approximate the nonlinear dynamics of underwater vehicles,

proposed. Radial basis neural is used to
without any prior knowledge of the system. The simplicity
of the network structure, proposed in this study, enables
of the
underwater vehicles. The on-line weight adaptation law of
the neural network

Lyapunov stability concept.

faster approximation nonlinear  dynamics  of

is derived in the context of the

2. Dynamics of underwater vehicles

The dynamic equations of the motion of underwater
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vehicles have been presented by several authors (Healehy
and Lienard, 1993, Fossen and Sagatun, 1991). In this study,
we consider a nonlinear six degrees-of-freedom mathematical
model. The rigid body underwater vehicle model for the
body fixed frame can be represented as follows:

Mu+ C)v+Dv+gln) =1 @
2=J( 9V 2

where V=[u,v,w,p,'q,r]’, n=[XY,Z,9,8,¥]". Here, v denotes the
linecar and angular velocity vector with respect to the
body-fixed coordinates, n denotes the position and attitude
vector with respect to the earth-fixed coordinates, and T is
used to describe the forces and moments acting on the
vehicle in the body-fixed coordinates. The body-fixed
velocity vector can be transformed into the earth-fixed frame
through an Euler angle transformation denoted by J(n). M is
the inertia matrix, including added mass, C(V) is the matrix
of Coriolis and centrifugal terms, D(v) is the damping
matrix, and g(n) is the vector of gravitational forces and
moments.

Fig. 1 Coordinate system

Also, the equation of motion for the underwater vehicle
can be represented in earth-fixed frame, in terms of position
and attitude, through the transformation as follows:

M)+ Clv,my +D,(v,n) 7 G)
+g,=7" (D=

Here, each term is defined by:

M D=7 "M “(»

Clv, =T TpD[CO»)— M ‘() K)1J ) @
D (v,p=] (D] (n)

g, (=7 T(negln)

The coordinate system is shown in Fig. 1. A more
detailed discussion on mathematical models of underwater
vehicles can be found in Fossen (1994).

3. Neural network controller design

In the following sections, a neural network control law,
with on-line adaptation law in 6 DOF, is derived. A Radial
basis function neural network is employed, since it is
known that a linear superposition of radial basis functions is
the optimal solution to a class of function approximations,
given a finite set of data in R (Sanner and Slotine, 1992).
Moreover, the relatively simple network structure enables
the derivation of an adaptive network update law.

As mentioned in the previous section, underwater vehicles
are difficult to model. It is not only difficult to obtain the
exact value of hydrodynamic coefficients, but the coefficients
also change depending upon the configuration of underwater
vehicles. Therefore, robustness and adaptability are important
requirements for the underwater vehicle controller.

Recently, neural networks have shown great promise in
the realm of nonlinear control,
approximation and

due to their universal
Also, a
amount of prior knowledge of the plant is not required in

learning  capabilities. large
designing a controller. Usually, neural networks require
iterative off-line training for parameter adjustment. In this
study, however, no prior off-line training is necessary for
the adaptation law derived here. Specifically, the intent is to
design a controller having advantages of both neural
network control and sliding mode control.

3.1 Radial basis neural network

Now, the derivation of the neural network is considered.
The architecture of the network is shown in Fig.2. Research
by Sanner and Slotine (1992) supports the assertion that one
hidden layer network can uniformly approximate complex
functions to a specified degree of accuracy, provided a
sufficient number of nodes are employed. This kind of
can be

neural network represented mathematically as

follows:

fl(x) = ]ZNl w,’,‘?’,'(x, 51) i=1,..., n (5)

where v=expl- || x-&; | 2/2021] is the nonlinear function at

node i, taken as a Gaussian function of the inner

product of its arguments, and x=[v,,v,v,7]7. The
coefficient &; represents the center of radial Gaussian
and ¢% is a measure of its width at node i, while wy
represents the output weight for that node.

It is assumed that there exists a certain combination
of optimal weights of the network, which provides the
mapping, with an

approximation of the nonlinear
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¢dequate number of neurons. The radial basis neural
network is chosen, because they can be designed in a
that it

teed-forward networks, even though they may require a

traction of time takes to train standard

larger number of neurons.

Fig. 2 Structure of neural network

&.2 Controller Structure
A certain measure of error is defined as follows:

s=7+ 2% (6)

where A is any positive constant and n=n-nd. nd is the
cesired position and attitude of the vehicle, generated by a
t-ajectory planner.

For notational simplicity, it is convenient to rewrite the
equation (6) in terms of the virtual reference trajectory nr
cefined as follows:

S=0= 770,= 1~ A% %

The reference trajectory in body-fixed frame can be
cerived as follows:

7,= v, (8)
v,=1 '3, O
v,=J" Y7, — I W) 3] (10

The Lyapunov function candidate is chosen as follows:

Lot
Vet sTM s+ 5 oA w7 (1)

I' is a positive definite weighting matrix of appropriate
dimensions, and W= w—w is the estimation error of the
network output weights.

Differentiating ¥ with respect to time yields:

V:%( STM”S +STM”S+STM”S) (12)
+tiwr ' wh)

Using the fact that s"Ms=s"M,5 and s7(M,—2C,)s=0,
VsvnERn (Fossen, 1994), we can rewrite the equation (11)
as follows:

V=sT(M,5+ C,) + tH{wl ' %"} (13)
Further, it can be shown as follows:

V ="M, 5+ Cjp— M,7,— C,3,) + thl™ "3}
=s"(J" "(Dr—D,n—g,— M,5,— C,i,)
+t{wr )
=ST(—D,])S+ sT(]—T(v)z-—Mﬂiy',_ Cvﬂ.r (14)
=Dy, —g) il ")
=sT(=D)s+s"(J pe—J AMo,+ Cv,
+Dv,+ gD+ @l '@’

Here, the following relationship is used(Fossen, 1994).

M”;].,‘i' C,/ﬁ, +D”77,+ g” (15)
=] Up[Mp,+ Cv,+ Dy, + gl

The mneural
nonlinear function:

network is employed to approximate the

My, + C(v)y+ D(Wv,+ gln)= wix, & (16)
Now, as we take the control input:
=%, &~ T (DK 17)

the time derivative of the Lyapunov function becomes:

V ==s"D+E)s+ (19 oA, &+ Bl %'} g
< —sT(D+ K s+ ol Al v(x, X7 ')+ 1 %"}

The adaptive law of the network weight is chosen as:

W =—IYx, & 197 (19)
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Then, it can be shown that the Lyapunov function
candidate becomes negative and semi-definite, which, in
turn, implies the convergence of s to zero, by applying
Barbalit's lemma. Also, this means that w is bounded.

Uuv hi]
dynamics | ¥

Fig. 3 Hlustration of the structure of the controller

In summary, the control law is given by (17) and the
adaptation law is given by (19). It should be noted that the
approximation of the nonlinear function (16) can also be
expressed as the product of regressor matrix and unknown
parameters, under the assumption that the nonlinear
function is linear in their parameters. The neural network
approximation does not require such an assumption, and it
is assumed that the dynamics of the vehicles are unknown.
The architecture of the controller is shown in Fig3. Sliding
mode control is used with neural network control to
compensate for the modeling error.

4, Simulation

In this section, the results of the computer simulation for
an underwater vehicle model (Spangelo and Egland, 1994)
are presented. The equation of mwtion for a 6 DOF
underwater vehicle is considered. All simulations are

performed at 5Hz.

4.1 Reference trajectory generation
A more realistic way to produce the desired state can be
shown as follows:

Vgt AVd‘f‘]T( 782, ]T(nd).an (20)
Ha= K nghvy
Here nc is a reference input, @=0T>0 and A>0. We can

specify the desired characteristics of the underwater vehicle
by tuning the matrix Q and A

4.2 Controller setup

The architecture of the neural network is illustrated in
Fig2. The centers of Gaussian function vi(x2&i) were
uniformly spaced in the state space. The width of the
Gaussian function vi(x,&i) is set to 30. The overall weights of
the neuwral network are initially set at zero. Only a single

MIMO neural network is employed in combination with the
sliding mode control. The adaptive gain matrix is set to 0.7
The inputs to the network are normalized between -1 to 1.

The choice of the width of the Gaussian function Vi{x,Zi)
is the most critical factor for the overall stability of the
system, and is related to the choice of the mumber of
Gaussian functions over the state space. In other words, the
optimal width of the Gaussian function should be
determined, considering the width of an area in the input
space to each newron response. The value of vi(xZi) should
be large enough that the neurons respond to enough
overlapping regions of the input space. Note that the
Gaussian function produces the output of value 1 when the
input exactly matches the weight of the function. This, in
turn, can be tuned by changing the width of the Gaussian
function. The weighting matrix is multiplied by the output
of the Gaussian function, and is updated by the adaptive
law.

A Sliding mode control technique is combined with the
newral network controller, in order to compensate for the
modeling error and fo improve the robustness of the
controller.

4.3 Results

The tracking performance of the XY position of the
vehicle for the position command is shown in Figd It can
be seen that the proposed newral network controfler
provides fairly good tracking performance. The performance
of the neural network is compared with the sliding mode
controller and with the combined controller of neural
network and sliding mode control. The Sliding mode
offers almost the tracking
performance. However, when the neural network controlier

controller,  alone, same
is combined with the sliding mode controller, improved

tracking performance can be achieved.
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Fig. 4 X and Y trajectory
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Fig5 shows the depth control performance, and Fig.6
zhows the heading angle control performance. Similar to the
*, Y position control, the neural network controller provides
sood depth control performance. However, small oscillation
i- observed in the heading angle response when the neural
retwork controller is used, due to the high gain in the
adaptation. with the sliding mode
controller, the unwanted oscillatory motion can be removed.
the the different

ciegrees-of-freedom of the vehicle.

By combining it

tig.7 illustrates control efforts for

SMC

Rl
: SMChN
___Reteconc

Bepthimi

@ 5 w0 R 20 250 g 3% L)
Timstsec)

Fig. 5 Response of the vehicle depth
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Fig. 6 Response of the vehicle yaw angle

SMC o

=
%
Conteat wipus:

Canuct npat
o

100 300 00

200
Time{sec)

tig. 7 Control inputs for each degree of freedom (a) X
positior control input (b) Y position control input
(c) Depth control input (d) Yaw control input
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Fig. 9 X and Y trajectory with changed hydrodynamic
coefficients

The neural network controller requires almost the same

amount of control efforts as the sliding mode control. An
improved performance can be achieved by blending the
neural network controller and sliding mode controller, in
exchange for a slight increase in the control effort. For
clarity, the performance comparison of the neural network
controller, the sliding mode controller, and the combined
controller, in terms of error, are illustrated in Fig.8. Fig.8
(a),(b),(c) shows the error between the desired trajectory and
the actual trajectory, using each type of controller. The
metric of the error is illustrated at (d) of Fig.8.
The neural network controller produces slightly better results
than the sliding mode controller. Robustness of the proposed
control technique is tested by changing the hydrodynamic
coefficients of the vehicle.

As shown in Fig9, a combined controller produces a
more robust with changed parameters,
compared to using the neural network controller, alone. In
the simulation, the values of the inertia matrix are reduced
by 50%, the Coriolis and centrifugal matrix is reduced by
30%, and the reduced by 50%,

respectively.

performance

damping matrix is
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5. Conclusion

An adaptive neural network controller has been developed
for an underwater vehicle in six degrees-of-freedom. This
controller combines the racdial basis neural network and
sliding mode With
knowledge of the vehicle dynamics, the proposed control

control  techniques. limited prior
technique can achieve improved tracking performance. The
number of neurons and the width of Gaussian function
should be chosen carefully. The following conclusions can be
drawn from this study. First, for design of the controller,
the dynamics of the vehicle need not be precisely known.
Second, no linearization is required to deal with nonlinear
dynamics. Third, the controller
adaptive. Fourth, the controller does not need any prior

vehicle is robust and
training phase and can be applied on-line. Future study will

be performed, including actuator dynamics for the system.
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