• Title/Summary/Keyword: Neural Network Processor

Search Result 85, Processing Time 0.03 seconds

Design of DNP Controller for Robust Control Auto-Systems (DNP에 의한 자동화 시스템의 강인제어기 설계)

  • 김종옥;조용민;민병조;송용화;조현섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.121-126
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • ;趙賢燮
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.187-187
    • /
    • 1999
  • in order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment system is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulation are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기를 이용한 유도전동기의 속도제어)

  • 박영민;김덕헌;김연충;김재문;원충연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 1998
  • In this paper, an auto-tuning method for fuzzy controller's membership functions based on the neural network is presented. The neural network emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and the reformed fuzzy controller uses for speed control of induction motor. Thus, in the case of motor parameter variation, the proposed method is superior to a conventional method in the respect of operation time and system performance. 32bit micro-processor DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzzy control algorithm. Through computer simulation and experimental results, it is confirmed that the proposed method can provide more improved control performance than that PI controller and conventional fuzzy controller.

  • PDF

Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation (야지 자율주행을 위한 환경에 강인한 지형분류 기법)

  • Sung, Gi-Yeul;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

Simulation on Performance of Constructive Module for Neural Network Processor (신경회로망 연산기의 구조 결정 모듈 성능에 관한 시뮬레이션)

  • Yu, In-Kap;Jung, Je-Kyo;Wee, Jae-Woo;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.101-103
    • /
    • 2004
  • Expansible & Reconfigurable Neuro Informatics Engine(ERNIE) is effective in reconfigurability and extensibility. But ERNIE have the problem which have limited performance in initial network. To solve this problem, the constructive module using the reconfigurable ERNIE is implemented in simulation model. In this paper, simulation results on sonar data are showed that ERNIE using the constructive module obtains the better performance compared to ERNIE without it.

  • PDF

Design of RFNN Controller for high performance Control of SynRM Drive (SynRM 드라이브의 고성능 제어를 위한 RFNN 제어기 설계)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.33-43
    • /
    • 2011
  • Since the fuzzy neural network(FNN) is universal approximators, the development of FNN control systems have also grown rapidly to deal with non-linearities and uncertainties. However, the major drawback of the existing FNNs is that their processor is limited to static problems due to their feedforward network structure. This paper proposes the recurrent FNN(RFNN) for high performance and robust control of SynRM. RFNN is applied to speed controller for SynRM drive and model reference adaptive fuzzy controller(MFC) that combine adaptive fuzzy learning controller(AFLC) and fuzzy logic control(FLC), is applied to current controller. Also, this paper proposes speed estimation algorithm using artificial neural network(ANN). The proposed method is analyzed and compared to conventional PI and FNN controller in various operating condition such as parameter variation, steady and transient states etc.

Servo Control of Hydraulic Motor using Artificial Intelligence (인공지능을 이용한 유압모터의 서보제어)

  • 신위재;허태욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 2003
  • In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.

  • PDF

Comparison of Weight Initialization Techniques for Deep Neural Networks

  • Kang, Min-Jae;Kim, Ho-Chan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Neural networks have been reborn as a Deep Learning thanks to big data, improved processor, and some modification of training methods. Neural networks used to initialize weights in a stupid way, and to choose wrong type activation functions of non-linearity. Weight initialization contributes as a significant factor on the final quality of a network as well as its convergence rate. This paper discusses different approaches to weight initialization. MNIST dataset is used for experiments for comparing their results to find out the best technique that can be employed to achieve higher accuracy in relatively lower duration.

wheelchair system design on speech recognition function (음성인식 기능을 탑재한 다기능 휠체어 시스템 설계 및 구현)

  • 김정훈;류홍석;강재명;강성인;김관형;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.1-5
    • /
    • 2002
  • The purpose of this paper is developing a speech recognition module in a wheelchair for the sake of convenience. of the disability. For this system, we used TMS320C32 as a main processor; eliminated noise by applying Winer filler while considering characteristics of noise environment in pre-processing stage, and; extracted 12 feature patterns per france using LPC&Cepstrum. Then, we implemented the hybrid form combining DTW (Dynamic Time Warping), which is generally used for isolated words in the conventional algorithms, in the recognition Part, and NN (Neural network) to prevent any error of recognition. In this research, we achieved a recognition rate of more than 96% on isolated words when DTW and Hybrid forms were individually experimented in noise environment

  • PDF

Parallel Video Processing Using Divisible Load Scheduling Paradigm

  • Suresh S.;Mani V.;Omkar S. N.;Kim H.J.
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.83-102
    • /
    • 2005
  • The problem of video scheduling is analyzed in the framework of divisible load scheduling. A divisible load can be divided into any number of fractions (parts) and can be processed/computed independently on the processors in a distributed computing system/network, as there are no precedence relationships. In the video scheduling, a frame can be split into any number of fractions (tiles) and can be processed independently on the processors in the network, and then the results are collected to recompose the single processed frame. The divisible load arrives at one of the processors in the network (root processor) and the results of the computation are collected and stored in the same processor. In this problem communication delay plays an important role. Communication delay is the time to send/distribute the load fractions to other processors in the network. and the time to collect the results of computation from other processors by the root processors. The objective in this scheduling problem is that of obtaining the load fractions assigned to each processor in the network such that the processing time of the entire load is a minimum. We derive closed-form expression for the processing time by taking Into consideration the communication delay in the load distribution process and the communication delay In the result collection process. Using this closed-form expression, we also obtain the optimal number of processors that are required to solve this scheduling problem. This scheduling problem is formulated as a linear pro-gramming problem and its solution using neural network is also presented. Numerical examples are presented for ease of understanding.