• Title/Summary/Keyword: Neural Network PID

Search Result 203, Processing Time 0.03 seconds

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

A Study on Self-tunning of PID Controller using Neural Network Theory (신경망이론을 이용한 PID제어기의 자기동조에 관한 연구)

  • Jun, Kee-Young;Hahm, Nyoun-Kun;Sung, Nark-Kuy;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2610-2612
    • /
    • 1999
  • In controlling vector of induction motor, PID controller is required much time as the expert should control manually a gain of controller according to plant or a change of circumstances. Accordingly, this paper has gotten a gain of PID controller used neural network by self-funning method in order to settle above problem. The neural network can describe an input/output features in spite of non-linear system which is hard to get mathematical model by controlling the strength of connection by learning. It has a strong character against a distortion and noise of input information, and is suitable modeling of diver-variable system which is composed of several input/output. This paper has represented the self-tunning method for gain of PID controller used neural network when using PID controller to control speed of induction motor, and has checked strong characters against distortion and noise of input information through simulation.

  • PDF

Two-Degree-of-Freedom PID controller with Neural network for position control (위치제어를 위한 신경망 2 자유도 PID 제어기)

  • 이정민;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.193-196
    • /
    • 2000
  • ln this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PIB control system. but the position control system have difficulty in controling variable load and changing parameter We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point.

  • PDF

A Vibration Control of Building Structure using Neural Network Predictive Controller (신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Kang, Suk-Bong;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF

Experimental Studies of Balancing an Inverted Pendulum and Position Control of a Wheeled Drive Mobile Robot Using a Neural Network (신경회로망을 이용한 이동로봇 위의 역진자의 각도 및 로봇 위치제어에 대한 연구)

  • Kim, Sung-Su;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.888-894
    • /
    • 2005
  • In this paper, experimental studies of balancing a pendulum mounted on a wheeled drive mobile robot and its position control are presented. Main PID controllers are compensated by a neural network. Neural network learning algorithm is embedded on a DSP board and neural network controls the angle of the pendulum and the position of the mobile robot along with PID controllers. Uncertainties in system dynamics are compensated by a neural network in on-line fashion. Experimental results show that the performance of balancing of the pendulum and position tracking of the mobile robot is good.

A Study on UCT Steering Control using NNPID Controller (신경회로망 자기동조 PID 제어기를 이용한 UCT의 조향제어에 관한 연구)

  • 손주한;이영진;이진우;조현철;이권순;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.363-369
    • /
    • 1999
  • In these days, there are a lot of studies in the port automation, for example, unmanned container trasporter, unmanned gantry crain, and automatic terminal operation systems and so on. In terms of loading and unloading equipments. we can consider container transporter. This paper describes the automatic control for the UCT(unmanned container transporter), especially steering control systems. UCT is now operated on ECT port in Netherland and tested on PSA ports in Singapore. So we present a design on the controller using neural network PID(NNPID) controller to control the steering system and we use the neural network self-tuner to tune the PID parameters. The computer simulations show that our proposed controller has better performances than those of the other.

  • PDF

Turbojet Engine Control of UAV using Artificial Neural Network PID (인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어)

  • Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this paper, controller Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Artificial Neural Network Error Back Propagation Algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the ANN PID controller effectively controls the fuel flow input of the control system. ANN PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF