• 제목/요약/키워드: Neural Network PID

검색결과 203건 처리시간 0.026초

PID 계수를 가중치로 가진 단일뉴런을 이용한 Rotary Inverted Pendulum 제어 (Rotary Inverted Pendulum Control Using Single Neuron With Weights of PID Parameters)

  • 이정훈;정성부;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2569-2572
    • /
    • 2003
  • In this paper, we Proposed the inverted pendulum control method using single neuron neural network that have weights as PID parameters. The proposed method has three inputs(proportion, integration, differentiation term of the error), and uses weights as P, I, D parameters. In order to verify the effectiveness of the proposed method, we experimented on the rotary inverted pendulum with load effect disturbance. The results showed the effectiveness and robustness of the proposed pendulum controller.

  • PDF

GMDP 신경망을 이용한 PID 적응 위치 제어기에 관한연구 (A study on the PID adaptive position controller using GMDP Neural Network)

  • 추연규;임영도
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.258-263
    • /
    • 1995
  • 본 논문은 일반화된 다중 수상돌기 적 (GMDP : Generalized Multi Dendrite Product) 유닛트 신경망을 이용한 PID 적응 위치제어기를 구성하여 직류 서어보 전동기의 위치제어를 실시간 처리 하였다. 제안한 제어기를 위치제어에 적용시켜 실험한 결과 기존의 MLP 신경망 제어기를 이용한 것 보다도 샘플시간을 줄일 수 있다는 장점으로 정밀한 제어 가 가능하다는 것을 확인할 수 있었다. 학습규칙은 기존의 역전파 학습방법이 GMDP 신경 회로망에 적용되었다.

  • PDF

면역 알고리즘을 이용한 PID 제어기의 지능 튜닝 (Intelligent Tuning Of a PID Controller Using Immune Algorithm)

  • 김동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.8-17
    • /
    • 2002
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems with a less flexible result to the external behavior. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. In addition to that, tuning performance cannot be guaranteed with regards to a plant with non-linear characteristics or many kinds of disturbances. Along with these, this paper used immune algorithm in order that a PID controller can be more adaptable controlled against the external condition, including moise or disturbance of plant. Parameters P, I, D encoded in antibody randomly are allocated during selection processes to obtain an optimal gain required for plant. The result of study shows the artificial immune can effectively be used to tune, since it can more fit modes or parameters of the PID controller than that of the conventional tuning methods.

Hardware Implementation of a Neural Network Controller with an MCU and an FPGA for Nonlinear Systems

  • Kim Sung-Su;Jung Seul
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.567-574
    • /
    • 2006
  • This paper presents the hardware implementation of a neural network controller for a nonlinear system with a micro-controller unit (MCU) and a field programmable gate array (FPGA) chip. As an on-line learning algorithm of a neural network, the reference compensation technique has been implemented on an MCU, while PID controllers with other functions such as counters and PWM generators are implemented on an FPGA chip. Interface between an MCU and a field programmable gate array (FPGA) chip has been developed to complete hardware implementation of a neural controller. The developed neural control hardware has been tested for balancing the inverted pendulum while controlling a desired trajectory of a cart as a nonlinear system.

신경회로망 예측 제어시스템을 이용한 다층 구조물의 진동제어에 관한 연구 (A Study on the Vibration Control of Multi-story Structure Using Neural Network Predictive Control System)

  • 조현철;이진우;이영진;이권순
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.324-329
    • /
    • 1998
  • In this paper, neural networks predictive PID (NNPPID) control system is proposed to reduce the vibration of structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the optimal parameters of controller. The neural networks predictor forecasts the future outputs based on present input and output of structure. The controller is PID type whose parameters are yielded by neural networks self tuning algorithm. Computer simulations show displacements of multi-story structures applied to NNPPID system about environmental load-wind forces and earthquakes.

  • PDF

Neural Network-Based System Identification and Controller Synthesis for an Industrial Sewing Machine

  • Kim, Il-Hwan;Stanley Fok;Kingsley Fregene;Lee, Dong-Hoon;Oh, Tae-Seok;David W. L. Wang
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.83-91
    • /
    • 2004
  • The purpose of this paper is to obtain an accurate nonlinear system model to test various control schemes for a motion control system that requires high speed, robustness and accuracy. An industrial sewing machine equipped with a Brushless DC motor is considered. It is modeled by a neural network that is configured as an output-error dynamical system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a 2 degree-of-freedom PID controller to compensate the effects of disturbance without degrading tracking performance has been de-signed. In this experiment, it is not preferable for safety reasons to tune the controller online on the actual machinery. Experimental results confirm that the model is a good approximation of sewing machine dynamics and that the proposed control methodology is effective.

Wavelet Neural Network Controller for AQM in a TCP Network: Adaptive Learning Rates Approach

  • Kim, Jae-Man;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.526-533
    • /
    • 2008
  • We propose a wavelet neural network (WNN) control method for active queue management (AQM) in an end-to-end TCP network, which is trained by adaptive learning rates (ALRs). In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In our method, the WNN controller using ALRs is designed to overcome these problems. It adaptively controls the dropping probability of the packets and is trained by gradient-descent algorithm. We apply Lyapunov theorem to verify the stability of the WNN controller using ALRs. Simulations are carried out to demonstrate the effectiveness of the proposed method.

선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계 (Design of an Intelligent Speed Control System for Marine Diesel Engines)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권4호
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF

다단 신경회로망 예측제어기 개발 (A development of multi-step neural network predictive controller)

  • 이권순
    • 전자공학회논문지C
    • /
    • 제35C권8호
    • /
    • pp.68-74
    • /
    • 1998
  • The neural network predictiv econtroller (NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output (NNP:neural network predictor) and the other one is for control the plant(NNC: neural network controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and predictin error. The NNP forecasts the future output based upon the current control input and the estimated control output. The input and the output data of a system and a new method using evolution strategy are used to train the NNP. A two-step NNPC is applied to control the temeprature in boiler systems. It was compared with PI controller and auto-tuning PID controller. The computer simulaton and experimental results show that the proposed method has better performances than the other method.

  • PDF

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.